
CSE491/596, Fall 2022 Problem Set 3 Due Thu. Oct. 20

Lectures and Reading.

Dick Lipton and I have sometimes advanced the view that reductions between problems should
be regarded as fundamental objects of study, even more than the problems themselves. We mean this
more at the level of computational complexity theory. But for the level of (un-)decidability, too, it is
important to understand the basic mechanism of a reduction. This goes especially for understanding
the reduction from ATM to NETMm whose “All-Or-Nothing Switch” property can be re-used to
carry out numerous other reductions. I have decided again to recommend the notes

https://cs.uwaterloo.ca/ watrous/ToC-notes/

by John Watrous, whose chapters 15,16,17 are individually linked from the course webpage. My
overall main point is that reductions A ≤m B have three levels of reasoning:

(a) There is the “outer level” where the reasoning goes: “If there were a Turing machine S that
decides B, then the reduction would give us a total Turing machine R that decides A. R would
have the form, ‘On input x, run the reduction function to get y = f(x) and run S on y. If S
accepts, accept. If S rejects, reject.’ But we know A is undecidable, so R cannot exist. Thus
S cannot exist. So B is undecidable too.” Well, please do not ever write this. The “Reduction
Theorem” at the end of the Monday 9/30 lecture takes care of this reasoning once-and-for-all.

(b) The “middle level” is the logical reasoning that establishes the equivalence x ∈ A ⇐⇒ f(x) ∈
B, often best pictured as two implications x ∈ A =⇒ f(x) ∈ B and x /∈ A =⇒ f(x) /∈ B.

(c) The “inner level” is the code editing used to design f which makes the implications come true.

Most sources I find online strike me as blending (a) and (b) together in a way that detracts from (c),
but Watrous’s notes not only treat (b) and (c) cleanly but also match other aspects of my lectures
well. Hence please also read chapters 15–17 of his notes, focusing on ch. 16. Here are some things to
watch for:

• In ch. 15, his ADTM is the same as ATM since a TM defaults to being deterministic. The
decidable language SDTM which he gives in equation (15.2) will figure into the two-tape DFA
lecture mentioned above, and later into the equivalence of two definitions of the class NP. (It
is a variant of the historical predicate and function combo T (M,w,~c) ∧ U(~c) = y—meaning
that ~c is a string encoding a valid halting (or accepting) computation of the TM M on input w
and its output is y—called the Kleene T-predicate after the same Stephen Kleene who proved
the theorems on regular expressions and FAs covered earlier.)

• Note that Watrous likewise uses the diagonal language as his first example of undecidability,
calling it DIAG rather than DTM or just D. He does not define KTM as the complement
of DTM but shows the undecidability of ATM directly, using “K” to refer to a transformed
machine which makes an appearance in ch. 16 too as the edited code for the mapping reduction
from ATM to HPTM (which he calls HALT).

• Section 15.4 has Theorem 15.7—covered in my lectures as RE ∩ co-RE = REC—and the trick
of “hard-coding an input string.” I used that trick earlier to convert the “Universal RAM
Simulator” U(P, x) = P (x) into a Turing machine MP which simulates a particular program P
by way of writing P on its own tape using hard-coded states and then going to the start state
of U , so as to make MP (x) = U(P, x).

https://cs.uwaterloo.ca/~watrous/ToC-notes/


• Note that Watrous devotes time in his Chapter 16, Example 16.6, to the ATM ≤m HPTM

reduction, which was covered at the end of the Friday Oct. 4 lecture. His example 16.7 follows
from that lecture upon realizing the equivalence to the mirror-image reduction of their com-
plements: KTM ≤m NETM . His example 16.8 is an example of re-using the “all-or-nothing
switch” reduction. His example 16.9 will be presented this week as a way to build on the
“switch” mechanisms.

• The material in sections 17.1–17.3 has mostly been touched on, while the last section 17.4 will
be covered in-tandem with Theorem 10.2 from Arun Debray’s notes and the analogous theorem
for NP, which is Theorem 13.12 beginning the last section of Debray’s notes which was also
given out last Friday.

So the reading for now in brief is • the newly-given Watrous chapters 15–17, and • the corre-
sponding coverage in sections 8 and 9 of Debray’s notes (but it is rather telegraphic). Skim the
Post Correspondence Problem for now and jump ahead to Theorem 10.11 (“Rice’s Theorem”) and
its proof. Then skip the Recursion Theorem and sections 11–12; part of the latter is covered in a
different way in an extra-credit problem on this assignment. After the coverage of reductions fin-
ishes on the 14th or 15th, we will start on complexity theory using section 13 of Debray’s notes and
parallel notes by myself and Eric Allender and Michael Loui which will be given out in hardcopy.
That material will not be on the first exam—only through this homework and section 10 of Debray’s
notes.

Assignment 3, due Thu. 10/20 in class

(1) Define the reversal of a language A by AR = {xR : x ∈ A}, where xR is the reversal of the
string x. Give a decision procedure for the following computational problem:

Instance: A DFA M .

Question: Does L(M) equal its reversal?

Note that this would be true if every string in L(M) were a palindrome, but it is true if L(M) = Σ∗

too. You should begin by morphing the DFA M into an NFA N such that L(N) = L(M)R by making
each arc go the other way, making FN = {sM}, and making N have a new start state with ε-arcs to
all the old final states of M . Ultimately your algorithm should produce a DFA M ′ such that deciding
the EDFA problem on M ′ tells you the answer about M . (18 pts.)

(2) The feature of allowing a Turing machine to keep its head stationary (S for “stay” in an
instruction) is a useful convenience but not necessary: An instruction (p, c, d, S, q) could always
be replaced by making a special state p′ and giving the instructions (p, c, d,R, p′), (p′,−,−, L, q)
instead, where the ‘−’ is a “wildcard”—or rather, is shorthand for actually having an instruction
(p′, a, a, L, q) for every a ∈ Γ. Executing an instruction with “stay” is hence an elective rather than
essential capability of programs. Now consider the following languages:

(a) La = {〈M,w〉 : M(w) executes a stay instruction}.

(b) Lb = {〈M〉 : for some string w, M(w) executes a stay instruction}.

(c) Lc = {〈M〉 : for all strings w, M(w) executes a stay instruction}.

(d) Ld = {〈M〉 : for all strings w, M(w) never executes a stay instruction}.



(e) Le = {〈M〉 : for all strings w, M(w) can never execute a stay instruction, for the simple
reason that it has no stay instructions in its code}.

Classify each language according to whether it is (i) decidable, (ii) c.e. but not decidable, (iii)
co-c.e. but not c.e., or (iv) neither c.e. nor co-c.e. Once you give a reduction for the first one or two
undecidable cases, you should be able to handle the others with minimal further effort, making use of
a close analogy with the ATM and/or ETM problems which your first reduction(s) should establish.
(Note: The answer to Ld can be “yes” even if the computation M(w) never halts, so long as it never
executes an instruction with S, 6+9+6+9+6 = 36 pts.)

(3) Consider the following decision problem:

Instance: A deterministic Turing machine M = (Q,Σ,Γ, δ,�, s, qacc, qrej).

Question: Is there an input x that causes M to visit every one of its states at least once before
halting?

Prove by reduction from ATM that this problem is undecidable. (18 pts., for 72 on the set. Hint:
You are allowed to make Γ bigger in your M ′ than it is in the given M . But for 6 pts. extra credit,
explain how you could adapt the reduction in case all TMs were limited to the characters 0, 1, and
the blank—ideas from problem (2) might come in handy.)


