
CSE596, Fall 2022 Problem Set 4 (short) Due Thu. Oct. 27

Lectures: For the next four weeks, lectures will be:

• Tuesdays 8–9pm online via Zoom.

• Thursdays 4–5pm in 201A Capen. (This is in-person.)

• Fridays 4–5pm as normal in O’Brien 112.

The Monday before Thanksgiving (Nov. 21) will also be moved online, not sure if in the same
time period. The second prelim exam will probably be after Thanksgiving, on Wed. Nov. 30.

Reading: As of now, the Allender-Loui-Regan (ALR) notes (“Chapters 27 and 28” on the
course webpage) on computational complexity become the main text until quantum com-
puting after Thanksgiving. Their order will also be inverted: chapter 28, sections 1–4 on
NP-completeness will come before the theorems on complexity class relationships in sections
2.4–2.6 of chapter 27. This is done to make the coverage of polynomial-time mapping reduc-
tions follow straight on from that of general mapping reductions. In detail, here is what to
read for next week:

1. ALR chapter 27, section 1 and subsections 2.1–2.3. Mostly already covered; note how
the Wed. 10/20 lecture shortcutted the issue of time and space constructible functions
and O,Θ-notation. Ignore the “Gap” and “Speed-Up” theorems.

2. ALR chapter 28, sections 1 and 2.

3. Then in the middle of reading ALR chapter 28, section 3—before getting to the proof of
Cook’s Theorem (now called the Cook-Levin theorem)—go back to ALR chapter 27 and
skim section 3.3. You do not have to know the “DLOGTIME-uniformity” condition in
detail; just appreciate that Theorem 3.1 in ALR ch. 27 represents the idea that “software
can be efficiently burned into hardware.”

4. Then study the proof of the Cook-Levin theorem in ALR ch. 28, section 3. This circuit-
based proof is much briefer than proofs that work directly from Turing machines.

5. Next Friday’s lecture may get into section 4 of ALR ch. 28, which will be the main focus
of the following week as well.

Please also do read parallel sections of Debray’s notes, as well as the course notes, which are
close to aligned by week of tern abd MWF date.

——————Assgt. 4, due Thu. 10/27 “midnight stretchy” on CSE Autograder——————-

Relative to last year, this could be labeled “Assignment 3b,” but it makes more sense for
future years to label it this way.



(1) Given a language L, define LR = {xR : x ∈ L}, where xR means reversing the string x.
Note that if every string in L is a palindrome, then L = LR automatically, but it is possible
to have L = LR without every string in it being a palindrome, e.g., L = {01, 10}. Prove that
the language of the following decision problem is neither c.e. nor co-c.e.

Instance: A deterministic Turing machine M .

Question: Is L(M) = L(M)R?

Hint: This problem has a high “re-usability” quotient—it is OK to almost violate the Uni-
versity policy against re-submitting previously-used materials, provided you explain how and
why the reduction(s) apply to this case. (24 pts.)

(2) A symmetric n× n 0-1 matrix A represents an n-vertex undirected graph GA = (V,E)
with Aij = 1 ⇐⇒ G has an edge between vertex i and vertex j. We’ll assume that GA

has no self-loops; i.e., Aii = 0 for all i. Represent A in row-major order as a binary string of
length N = n2. Define L2 to be the language of A such that V can be broken into V1 ∪ V2

such that all edges in GA go between V1 and V2.

(a) Show that L2 belongs to P. You don’t have to design a Turing machine M to accept
L2—you can write pseudocode using data structures (such as sets) and appeal to the
polynomial-time simulation of a RAM/assembly-program by a TM as covered earlier in
the course. As a function of the input length N (not n), what is the asymptotic running
time of your pseudocode? (This is how running time is typically measured in algorithms
courses. 15+3 = 18 pts.)

(b) Now define L3 to be the language of undirected graphs G whose vertex set V can be
broken into V1 ∪ V2 ∪ V3 such that all edges from Vi go to Vj where j 6= i. For example,
the 5-vertex ”bowtie graph” G with E(G) = { (1, 2), (2, 3), (1, 3), (3, 4), (3, 5), (4, 5) }
belongs to L3, but the complete graph on 4 vertices does not. Show that L3 belongs to
NP. (Think about why your approach in the case of L2 fails to solve this problem. But
don’t spend a lot of time trying to make a polynomial-time algorithm for L3, because
there are good reasons for believing that no such algorithm exists. 12 pts., making 30
on the problem and 54 on the set)


