Open book, open notes, closed neighbors, 48 minutes. The exam totals 80 pts., subdivided as shown. Do em all three problems on these exam sheets-there is no "choice" option. em Show your work-this may help for partial credit.

Notation: The alphabet Σ is $\{a, b\}$ for problem (2) but $\{0,1\}$ for problem (3). For problem (1) it does not matter. The length of a string x is denoted by $|x|$. The complement of a language A is denoted by \tilde{A} and equals $\Sigma^{*} \backslash A$, where \backslash means difference of sets. Given sets A and B, the symmetric difference $A \triangle B$ is the same as $(A \cap \tilde{B}) \cup(B \cap \tilde{A})$, and also the same as $(A \backslash B) \cup(B \backslash A)$. In the way that union is like OR, it corresponds to the logical exclusive-or (XOR) operation.
(1) $(5 \times 4=20$ pts. total) True/False. Please write out the words true and false in full. Brief justifications are not necessary but may help for partial credit.
(a) If A and B are regular, then $A \triangle B$ is always regular.
(b) If A and B are decidable, then $A \Delta B$ is always decidable.
(c) If A and B are computably enumerable, then $A \triangle B$ is always computably enumerable.
(d) If A is regular, then A^{*} is decidable in linear time by a single-tape Turing machine.
(e) Every non-regular language is decidable.

(2) $\mathbf{1 8}+\mathbf{1 2}=\mathbf{3 0}$ pts.

Consider the following nondeterministic finite automaton $N=(Q, \Sigma, \delta, s, F)$ where $Q=$ $\{1,2,3\}, \Sigma=\{0,1\}, s=1, F=\{3\}$, and the instructions in δ are:

$$
\{(1, a, 2),(1, b, 3),(2, a, 2),(2, b, 1),(2, \epsilon, 3),(3, a, 1)\} .
$$

Convert N into a DFA M such that $L(M)=L(N)$ (18 pts.). Use the facing page for work. Also answer the following questions (3 pts. each).
(a) Is there a string u such that for each of its states q, N can process u from 1 to q ? Give a shortest such string if so.
(b) Is there a string v that N cannot process starting from state 1 at all? Again give a shortest such string if so.
(c) Is there a string w such that for all $y \in \Sigma^{*}, w y \in L(N)$? Again give a shortest w if so.
(d) Does $L(N)$ include $b(a a a b b)^{*}$? Briefly justify from your M.
(2) (workspace)
(3) $(8+4+18=30$ pts. $)$

Define L to be the language of strings x such that $|x|$ is even and the second half of x contains at least one '1.' For instance 010100 is in L but 01010000 is not, and 0100001 is not because its length is odd.
(a) Which of the following strings belong to L ? Say yes/no for each.
(i) ϵ
(ii) 1
(iii) 01
(iv) 010.
(b) Is $L \cdot L \subseteq L$? Justify your answer briefly.
(c) Prove via the Myhill-Nerode Theorem that L is nonregular. (End of Exam, but fine to put any spillover work on problem (2) below, besides your work on this problem.)

