CSE491/596 F23 Problem Set 3 Due Fri. 10/13 11:59pm

There will be a lecture online via Zoom on Monday, Oct. 9, 7:30-8:20pm. It will use the
same Zoom as for office hours, which I will re-post just before on Piazza. This will be
followed by an optional Review Session going over Assignment 2 and taking questions on
Assignment 3.

The First Prelim Exam will be in class period on Wednesday, Oct. 18. It will be timed
for 48 minutes after a 2-minute read-through. It will be based on assignments through this
one and topics through decidability and undecidability. It does not include the topic of
“mapping reductions” or the class NP. Lectures will, however, begin those topics before
the exam. Skim Debray’s sections 8-11, skip 12,read the rest of his section 13, and read
14 stopping just before the Cook-Levin Theorem. Coverage will also start blending in the
Allender-Loui-Regan CRC Handbook chapters 27 and 28. Read the background discussion
of time complexity and the definitions of the “canonical complexity classes” from P, NP
upward for now. We will actually cover section 3 of ALR ch. 27 and sections 14 of ALR
ch. 28 on NP-completeness before we cover space complexity and the detailed theorems in
ch. 27 and ch. 28, section 5.

(1) One of the following three languages is regular; the other two are nonregular. All
three are over the alphabet X = {a,b}. For the non-regular ones, prove that fact using
the Myhill-Nerode technique from notes and lecture. For the regular one, give a regular
expression for the language and explain why it works. (3 X 12 = 36 pts. Besides renaming
the “dummy variables” x and y in the statements of these languages to, say, # and v, another
trick is to reword the definitions to have just a single variable before the colon. For instance,
L; = {w : w can be broken as w = u - v such that #a(u) = #b(v)}.)

(i) L1 = {xy:x,y € {a, b}, #a(x) = #b(y)}.
(i) L, = {db™a" :k,m,n>0and (k<mVm<n)}.

(iii) Ls = {xay : x, y € {a, b}, #a(x) = #b(y)}.

(2) Define the “double word” language DW = {xx : x € {a,b}"}. For example, abab belongs
to DW but abba does not; so do aaaaaa and aabaab but not aaabbb. Because we wrote {a, b}*
not {a,b}", the empty string is not in DW with this definition. It is easy to prove by a
Myhill-Nerode argument that DW is not a regular language.

But now let us fix a number n and consider DW,, = the set of words of length 2n that
belong to DW. That is, DW, is the set of doublings of a-b binary words of length n. It is
finite, as there are just 2" such words, so it is regular. Show, however, that every DFA M,
such that L(M,) = DW,, must have at least 2" states. (18 pts. For extra credit, show that
every DFA must have some number f(n) > 2" ofr states. The higher your function f(n), the
more credit, up to another 18 pts.)



(3) Give a decision procedure for the following computational problem:

Instance: A DFA M.
QuesTion: Is there a string x such that M accepts the double-word xx?

Here are some hints to get you started: First, note that x can have any length. If the start
state of M is an accepting state the answer is immediately yes since € - € = €. So you may
presume this is not the case. But this also means that you can’t make an algorithm that
works by trying out a bunch of doubled strings—you’d have to try infinitely many.

Second, observe that the answer is yes if and only if there is a state g such that M processes
x from its start state s to g and M would also process x from g to some final state. Let m be
the number of states in M. For j = 1 to m make the following DFAs:

e M; is the same as M except that it has state j as its start state. (If you number s =1
then M, is just M.)

* M’is the same as M, keeping start state s, but has j as its only accepting state.

Then the answer is yes if and only if what is true about the language

(=

L' =| J (Lo n L))

j=1
—? Explain how you could make a single big DFA M,;, and apply a basic algorithm from
the Friday 10/6 lecture or notes to it. But finally estimate, how many states does My,
have? Is it polynomial or exponential in m? Do you get a decision procedure that runs in
polynomial time? (24 pts. total, for 78 regular-credit points on the set.)



