Reading and Schedule

Lectures next week will focus on the applications in chapters 8-10 of the Lipton-Regan text. Monday $12 / 11$ will illustrate the quantum part of Shor's algorithm from chapter 11 and show where this puts bounded-error quantum polynomial time (BQP) on the complexity map.

The Final Exam is on Wednesday, Dec. 13 in the lecture room, Norton 218, from $3: 30 \mathrm{pm}$ to $6: 30 \mathrm{pm}$ (not the classtime). It will have the same open-notes rules as the prelim exams. More so than the prelims, it will have some problems that combine different aspects of the course and/or allow more time for reflection and creativity. I've scheduled an in-person Review Session on the reading day, Tue. Dec. 12, starting at 10:30am and going to 12 pm or so. It will be hybrid and recorded. I will also have private office hours $1-2 \mathrm{pm}$, but from 2pm onward is the CSE Awards Party in the Davis ground-floor atrium.
—————Assignment 7, due Sat. 12/09"midnight stretchy" on CSE Autolab-
(1) Design quantum circuits that given the all-zero basis state as input create the following states-note the extra minus sign in the second one:
(a) $\frac{1}{2}(|000\rangle+|001\rangle+|010\rangle-|111\rangle)$, and
(b) $\frac{1}{2}(|000\rangle+|001\rangle-|010\rangle-|111\rangle)$.

You may check your work with an online quantum circuit simulator-recall that multiplying everything by any unit scalar, in particular -1 , gives the same quantum state. $9+9=18 \mathrm{pts}$.
(2) Design a 4×4 unitary matrix U such that $U|00\rangle$ equals the state $|\phi\rangle=\frac{1}{\sqrt{3}}(|00\rangle+$ $|01\rangle+|10\rangle$. For full credit, make U Hermitian as well as unitary. (12 pts . Then for a possible 6 pts. extra credit, say why one cannot design a circuit computing this U exactly from the basic gates we have seen so far in the course. A vocabulary word that might help you about the latter is, "dyadic.")
(3) Lipton-Regan text, exercises 4.11 and 4.12 , OK to skip the "argue generally" part of the latter. (Note the references to the swap gate in problem 4.8, which was also sketched in lecture; 18 pts. total)
(4) Lipton-Regan text, exercise 8.3 on page 96 . That is, for each of the other basis vectors $|00\rangle,|10\rangle$, and $|11\rangle$, show the spread of results from the four ways to fill the middle slot. Do any of those vectors yield a similarly easy way of distinguishing between "constant f " and "non-constant f "-by measuring one of the qubits - as the choice $|01\rangle$ did? (If you catch on that one of the three choices is going to be redundant with work already done, you can abbreviate it-i.e., working out 2 cases $\times 4$ middle matrices is enough for full credit. 21 pts . total; the problem set continues on the next page.)
(5) Draw a picture of the quantum circuit C_{G} that models a three-node undirected graph G with edges $(1,1),(1,2),(2,3)$. (The graph looks like a lollipop with a stick and a self-loop at the top.) You can draw the quantum circuit by hand or take a screenshot from any of the quantum circuit simulators we've discussed, mindful of any big-endian/little-endian difference.

What we want to do is calculate $\left.\left|\langle 000| C_{G}\right| 000\right\rangle\left.\right|^{2}$, which is the probability that when the circuit is run on input $|000\rangle$, the same value $|000\rangle$ is returned as output. We could write out the 8×8 matrices involved (beginning and ending with the 3 -qubit Hadamard transform $\mathbf{H}^{\otimes 3}$) and multiply them, but that would be a horrible amount of work. Tracing the "maze" shown for the triangle graph at the end of the Friday 12/01 lecture could also be gnarly, except that the input and output being $|000\rangle$ removes the need to trace through the tangly forking wires of the Hadamard parts:

- We can immediately place eight positive "mice" at the beginning of the middle section where the wires just go straight across. In linear algebra terms, we have $\mathbf{H}^{\otimes 3}|000\rangle=$

- At the end of the middle section, the wires going up to $|000\rangle$ at upper right as output will not have any sign flips. Thus the amplitude $\langle 000| C_{G}|000\rangle$ will be the sum of the eight "mice" at the end (summing +1 for "Phil," -1 for "Anti-Phil"), again divided by $2 \sqrt{2}$.
(a) Do the calculation for the above graph G. Again, you need only reproduce the diagrams for the middle sections with the \mathbf{Z} and $\mathbf{C Z}$ gates. Say and show which basis states are multiplied by -1 from each gate.
(b) Then change to a new graph G^{\prime} by moving the loop from node 1 to node 2 , so that G^{\prime} looks like a stick with a loop in the middle. What is the value of $\langle 000| C_{G^{\prime}}|000\rangle$ now? ($9+9=18$ pts. total)
(6) Lipton-Regan text, exercises $9.4-9.6$ on page 102. (The circuit C is pictured at the bottom of page 42; the four-cycle graph itself is drawn in page 24.) For 9.4, first draw the middle section with sixteen rows-noting e.g. that for the edge $(2,3)$ you will put -1 on the four rows $|0110\rangle,|0111\rangle,|1110\rangle,|1111\rangle$ since those have bits 2 and 3 set to 1 -and count how many "mice" change sign. Then for 9.5 , say how and why the final sign of each ending mouse depends on how many edges had both nodes with a 1 in the string. Finally, 9.6 is a challenge to see if you can generalize on the pattern you see, either intuitively or via linear algebra as suggested; there are 3 regular-credit points but up to 12 possible extra for convincing linear algebra or logically working when d_{G} cancels in $9.5 .(9+9+3=21 \mathrm{pts}$. total, for 108 regular-credit points on the set, and 18 more possible extra credit points)

