CSE491/596 Categories and Diction, then Examples of Reductions

<table>
<thead>
<tr>
<th>Elements/Objects</th>
<th>Attributes/predicates/verbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. string = list<char></td>
<td>(a) "Halts" - 4</td>
</tr>
<tr>
<td></td>
<td>a2 "run forever" - 4, not any inst. of 2</td>
</tr>
<tr>
<td>2. Language = set<string></td>
<td>(b) "Decidable" - 3 and 5</td>
</tr>
<tr>
<td>3. Class = set<Language></td>
<td>(c) "accepts" - 4</td>
</tr>
<tr>
<td>4. Machine</td>
<td>(d) "be accepted by ..." 1 meaning (x \in L(M)), 2 as (L(M))</td>
</tr>
<tr>
<td>5. Decision Problem (\equiv)</td>
<td>meanigen "the language [of strings] accepted by a machine"</td>
</tr>
</tbody>
</table>

\(\) is c.e. --- machine? class? The person saying "machine" probably meant to allow for the point that a given machine might not halt for all inputs. The person saying "class" either meant that \(\text{RE} \) is a class of languages, or means that any class of Turing machine languages like \(\text{P} \) or \(\text{NP} \) must be a subset of \(\text{RE} \). Grammatically, as a matter of diction, only a language can have the attribute of being c.e. A decision problem---?---the preferred term then is partially decidable (on the 'yes' side).

(f) "ends in a '0' " --- ? Strictly it's only string. But maybe you have in mind the language \(E_0 = \{ x : x \text{ ends in a } 0 \} \). Or the regular expression \((0 + 1)^* 0\).

Some Common Fallacies:

1. Subsets: "Any subset of a decidable language is decidable." Exposing it: \(\Sigma^* \) is a decidable language, in fact a regular language, but the mega-undecidable language \(\text{ALL}_{\text{TM}} \) is a subset of \(\Sigma^* \)

2. "If \(L \) is undecidable then \(L \) is c.e."

3. Intension vs. Extension: "Isn't \(\text{ALL}_{\text{TM}} \) the same as \(\Sigma^* \)?"

\(\text{ALL}_{\text{TM}} \) is the language of codes \(\langle M \rangle \) of machines \(M \) such that \(L(M) = \Sigma^* \).

As languages, \(\text{ALL}_{\text{TM}} \) and \(\text{ET}_{\text{TM}} \) are disjoint, i.e., \(\text{ALL}_{\text{TM}} \cap \text{ET}_{\text{TM}} = \emptyset \) which is saying that the condition on the set \(\{ \langle M \rangle : L(M) = \Sigma^* \text{ and } L(M) = \emptyset \} \) is incompatible.

[The recitation went into a long discussion of the fact of the \(\text{ALL}_{\text{TM}} \) language not literally "being" \(\Sigma^* \) and why it is a proper subset of \(\Sigma^* \)---because it includes strings like \(\langle M_1 \rangle \) for the machine \(M_1 \) below but not \(\langle M_0 \rangle \) for the machine \(M_0 \) whose language is \(\emptyset \).]

\[
\begin{align*}
(0/0, R), \\
(1/1, R) \\
M_1 \\
L(M_1) = \Sigma^*
\end{align*}
\]

\[
\begin{align*}
(0/0, R), \\
(1/1, R) \\
M_0 \\
L(M_0) = \emptyset
\end{align*}
\]

[The last prepared example of the recitation was about how reductions can be "plus and play" when you vary particulars of what is done before or after a simulation. The idea is to trace out the logical]
analysis that results. It involved the following problem, which was given for homework in a recent year. I originally defined it without the primes, i.e. just saying \(M \) everywhere, but explained how that can lead to confusion between the source \(M \) in the reduction and the "target property.

OnlyEps

INST: A Turing machine \(M'' \).

QUES: Is \(L(M'') = \{ \epsilon \} \)? That is, does \(M'' \) accept \(\epsilon \) but no other string?

Here are diagrams of reductions showing \(A_{TM} \leq_m \text{OnlyEps} \) and then \(D_{TM} \leq_m \text{OnlyEps} \).

\[
\langle M, w \rangle \xleftarrow{f} M' = \begin{cases}
\text{Simulate } M(w) \\
\text{if } x \neq \epsilon \text{ reject} \\
\text{if & when it accepts} \\
\text{accept } x.
\end{cases}
\]

\[
\langle M \rangle \xleftarrow{g} M'' = \begin{cases}
\text{Simulate } M(M) \\
\text{if & when it accepts} \\
\text{accept } x.
\end{cases}
\]

\(M \) accepts \(w \) \(\implies \) \(L(M') = \{ \epsilon \} \) Thus \(\langle M, w \rangle \in A_{TM} \implies \langle M' \rangle \in \text{OnlyEps} \)

\(\langle M, w \rangle \notin A_{TM} \implies L(M') = \emptyset \implies \langle M' \rangle \notin \text{OnlyEps} \).

\(M \) accepts \(\langle M \rangle \implies L(M'') = \Sigma^* \) Thus: \(\langle M \rangle \notin D_{TM} \implies \langle M'' \rangle \notin \text{OnlyEps} \)

\(M \) does not accept \(\langle M \rangle \implies L(M'') = \{ \epsilon \} \) Thus: \(\langle M \rangle \in D_{TM} \implies \langle M'' \rangle \in \text{OnlyEps} \)

Other variations on the theme can put the test for \(x = \epsilon \) after rather than before:

\[
\langle M, w \rangle \xleftarrow{f} M' = \begin{cases}
\text{Simulate } M(w) \\
\text{if & when it accepts} \\
\text{if } x = \epsilon \text{ accept} \\
\text{else reject}
\end{cases}
\]

\[
\langle M \rangle \xleftarrow{g} M'' = \begin{cases}
\text{Simulate } M(M) \\
\text{for up to } n \text{ steps} \\
\text{if it accepts within that time} \\
\text{accept } x \text{ iff } x \text{ is a palindrome} \\
\text{else reject } x
\end{cases}
\]
M accepts $w \implies L(M') = \{e\} \implies M' \in \text{OnlyEps}$

$\langle M,w \rangle \notin A_{TM} \implies L(M') = \emptyset \implies M' \notin \text{OnlyEps}$.

$M \in K_{TM} \implies L(M'') = \{\text{all palindromes of length greater the # of steps } M \text{ took to accept } \langle M \rangle\} \implies L(M'')$ is nonregular.

$M \notin K_{TM} \implies L(M') = \emptyset \implies L(M'')$ is regular. Thus $K_{TM} \leq_m I_{\text{REG}}$, i.e. $D_{TM} \leq_m I_{\text{REG}}$

Thus I_{REG} is not c.e.

For self-study, do the correctness logic on these reductions. Also make the second one work with the "delay switch" idea. It turns out that the OnlyEps language is in the least \equiv_m equivalence class of languages that reduce from both K and D. In particular, it is lower than ALL_{TM} and TOT.

[Technically, OnlyEps and K and D are all in the same equivalence class under Alan Turing's original reducibility notion, called Turing reductions and written \leq_T. But Turing reductions would collapse the left-right dimension (which corresponds to \exists versus \forall in logic) down to a single stick, as at right below. So I prefer to avoid them at this point.]

[We can drop the "TM" subscripts not only when the context is clear but because using Java or any other high-level programming language would give exactly the same classification of the analogously-defined languages, e.g. $A_{\text{Java}}, D_{\text{Java}}, K_{\text{Java}}, \text{OnlyEps}_{\text{Java}}$, etc. But now we will see machines between Turing machines and DFAs for which the classifications do change and the distinction between "decidable" and "undecidable" is almost on a knife-edge.]