
CSE491/596 Categories and Diction, then Examples of Reductions

Elements/Objects Attributes/predicates/verbs
1. string = list<char> (a) "Halts" - 4 a2 "run forever" - 4, not any inst. of 2
2. Language = set<string> (b) "Decidable" - 3 and 5
3. Class = set<Language> (c) "accepts" - 4
4. Machine (d) "be accepted by ..." 1 meaning , 2 as x ∈ L M() L M()

5. Decision Problem Language meaning "the language [of strings] accepted by a machine"≡

(e) is c.e. --- machine? class? The person saying "machine" probably meant to allow for the point that
a given machine might not halt for all inputs. The person saying "class" either meant that RE is a class
of languages, or means that any class of Turing machine languages like P or NP must be a subset of
RE. Grammatically, as a matter of diction, only a language can have the attribute of being c.e. A
decision problem---?---the preferred term then is partially decidable (on the 'yes' side).
(f) "ends in a '0' " --- ? Strictly it's only string. But maybe you have in mind the language E = x : x0 {

ends in a . Or the regular expression . 0} 0 + 1 0()*

Some Common Fallacies:
1. Subsets: "Any subset of a decidable language is decidable." Exposing it: is a decidable 𝛴*

language, in fact a regular language, but the mega-undecidable language is a subset of ALLTM 𝛴*

2. "If L is undecidable then L is c.e."

3. Intension vs. Extension: "Isn't the same as ?" ALLTM 𝛴*

 is the language of codes of machines such that . ALLTM M⟩ M L M = 𝛴() *

As languages, and are disjoint, i.e., which is saying that the ALLTM ETM ALLTM ∩ E = ∅TM

condition on the set is incompatible. ⟨M⟩ : L M = 𝛴 and L M = ∅() * ()

[The recitation went into a long discussion of the fact of the language not literally "being" ALLTM 𝛴*

and why it is a proper subset of ---because it includes strings like for the machine below 𝛴* ⟨M ⟩1 M1

but not for the machine whose language is .⟨M ⟩0 M0 ∅

[The last prepared example of the recitation was about how reductions can be "plus and play" when
you vary particulars of what is done before or after a simulation. The idea is to trace out the logical

0 / 0, R ,()

1 / 1, R()

M1

L M = 𝛴(1) *

0 / 0, R ,()

1 / 1, R()

M0

L M = ∅(0)

analysis that results. It involved the following problem, which was given for homework in a recent year.
I originally defined it without the primes, i.e. just saying everywhere, but explained how that can lead M
to confusion between the source in the reduction and the "target property."]M

OnlyEps
INST: A Turing machine .M''

QUES: Is ? That is, does accept but no other string?L M'' = 𝜖() { } M'' 𝜖

Here are diagrams of reductions showing and then .A ≤ OnlyEpsTM m D ≤ OnlyEpsTM m

 accepts Thus M w ⟹ L M' = 𝜖() { } ⟨M, w⟩ ∈ A ⟹ ⟨M'⟩ ∈ OnlyEpsTM

.⟨M, w⟩ ∉ A ⟹ L M' = ∅ ⟹ ⟨M'⟩ ∉ OnlyEpsTM ()

 accepts Thus: M ⟨M⟩ ⟹ L M'' = 𝛴() * ⟨M⟩ ∉ D ⟹ ⟨M''⟩ ∉ OnlyEpsTM

 does not accept Thus: M ⟨M⟩ ⟹ L M'' = 𝜖() { } ⟨M⟩ ∈ D ⟹ ⟨M''⟩ ∈ OnlyEpsTM

Other variations on the theme can put the test for after rather than before:x = 𝜖

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w()

input x

accept x.

if rejectx ≠ 𝜖

⟨M⟩ ↪ M'' =
g

if & when it accepts

Simulate M M()

input x

accept x.

if acceptx = 𝜖

(only by here)x = 𝜖 (all by here)x ≠ 𝜖

if acceptsM 𝜖

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w()

input x

accept x.
⟨M⟩ ↪ M'' =

g

if it accepts within that time

Simulate M M()

input x

accept x.

if acceptx = 𝜖

(only by here)x = 𝜖

if acceptx = 𝜖

let n = |x|

for up to stepsn

else reject

accept

else

accept iff is a palindromex x
reject x

 accepts M w ⟹ L M' = 𝜖 ⟹ M' ∈ OnlyEps() { }

.⟨M, w⟩ ∉ A ⟹ L M' = ∅ ⟹ M' ∉ OnlyEpsTM ()

all palindromes of length greater the # of steps took to accept }M ∈ K ⟹ L M'' = TM () { M ⟨M⟩

 is nonregular.⟹ L M''()

 is regular. Thus , i.e. M ∉ K ⟹ L M'' = ∅ ⟹TM () L M''() K ≤ ∼ ITM m REG D ≤ ITM m REG

Thus is not c.e.IREG

For self-study, do the correctness logic on these reductions. Also make the second one work with the
"delay switch" idea. It turns out that the language is in the least equivalence class of OnlyEps ≡ m

languages that reduce from both and . In particular, it is lower than and . K D ALLTM TOT
[Technically, and and are all in the same equivalence class under Alan Turing's original OnlyEps K D
reducibility notion, called Turing reductions and written . But Turing reductions would collapse ≤ T

the left-right dimension (which corresponds to versus in logic) down to a single stick, as at right ∃ ∀

below. So I prefer to avoid them at this point.]

[We can drop the "TM" subscripts not only when the context is clear but because using Java or any
other high-level programming language would give exactly the same classification of the analogously-
defined languages, e.g. , , , , etc. But now we will see machines between AJava DJava KJava OnlyEpsJava
Turing machines and DFAs for which the classifications do change and the distinction between
"decidable" and "undecidable" is almost on a knife-edge.]

REC

RE co-RE

neither c.e. nor co-c.e.

DA , KTM

𝜃 > 45∘

A

B

means A ≤ Bm

 must ALLJava

be somewhere
in this intersec-
tion of cones.

TOT

REG

ETM

OnlyEps

"Degrees of
Unsolvability"

2

1

0

(technically
defined via
≤ T)

𝛴*

HW5(1) answer:

Reversal
INST: A Turing machine .M''

QUES: Is ? Note: L M'' = L M''() ()R ∅ = x : x ∈ ∅ = ∅R R

Here are diagrams of reductions showing and then .A ≤ OnlyEpsTM m D ≤ OnlyEpsTM m

 accepts Thus M w ⟹ L M' = 01() { } ⟨M, w⟩ ∈ A ⟹ ⟨M'⟩ ∉ ReversalTM

.⟨M, w⟩ ∉ A ⟹ L M' = ∅ ⟹ ⟨M'⟩ ∈ ReversalTM ()

 accepts Thus: M ⟨M⟩ ⟹ L M'' = 𝛴() * ⟨M⟩ ∉ D ⟹ ⟨M''⟩ ∈ ReversalTM

 does not accept Thus: M ⟨M⟩ ⟹ L M'' = 01() { } ⟨M⟩ ∈ D ⟹ ⟨M''⟩ ∉ ReversalTM

Other variations on the theme can put the test for after rather than before:x = 01

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w()

input x

accept x.

if rejectx ≠ 01

⟨M⟩ ↪ M'' =
g

if & when it accepts

Simulate M M()

input x

accept x.

if acceptx = 01

(only by here)x = 01 (all by here)x ≠ 01

if acceptsM 𝜖

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w()

input x

accept x.
⟨M⟩ ↪ M'' =

g

if it accepts within that time

Simulate M M()

input x

accept x.

if acceptx = 𝜖

(only by here)x = 01

if acceptx = 01

let n = |x|

for up to stepsn

else reject

accept

else

accept iff begins with 0 and ends with 1x x

reject x

 accepts M w ⟹ L M' = 𝜖 ⟹ M' ∈ OnlyEps() { }

.⟨M, w⟩ ∉ A ⟹ L M' = ∅ ⟹ M' ∉ OnlyEpsTM ()

all palindromes of length greater the # of steps took to accept }M ∈ K ⟹ L M'' = TM () { M ⟨M⟩

 is nonregular.⟹ L M''()

 is regular. Thus , i.e. M ∉ K ⟹ L M'' = ∅ ⟹TM () L M''() K ≤ ∼ ITM m REG D ≤ ITM m REG

Thus is not c.e.IREG

Tue 11/29/2022 Review Session

HW5: Alternate way to pad a short clause like :u ∨ w()

. becomes u ∨ w ∨ z ∧ u ∨ w ∨ () (z⏨) w(0) w ∨ z∨ z' ∧ w ∨ ∨ z' ∧ ...(0) (0 z⏨)

 ,𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (1 x⏨2 3) (1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

one of them is to set true and false; then and become "don't-cares":x1 x3 x2 x4

In Cook-Levin, the only 3-clauses are ones of the form and those have the property that ∨ (u⏨ ∨ v⏨ w⏨)

they cannot be satisfied 3x, because of the other clauses and . u ∨ w ∨ z() v ∨ w ∨ z()

x⏨1 x1

x⏨2 x2

x⏨3

x3

x⏨n xn

. .
 .

. .
 .

C1

C2

Cm

x3

Edge-Disjoint Paths
The reduction makes f 𝜙 = G , s , s , t , t() (𝜙 1 2 1 2)

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨4
x4

C1

C2

C3

x⏨3

x1

x⏨2

x3

x1

x2

x⏨1

x⏨3

x⏨4

x⏨1 x1

x⏨2 x2

x⏨3

x3

x⏨n xn

. .
 .

. .
 .

C1

C2

Cm

x3

s1

t1

s2

t2

 Here is the whole thing for the formula used before:

𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (11 x⏨21 31) (12 22 x⏨32) (x⏨13 x⏨33 x⏨43)

𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (1 x⏨2 3) (1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

Reduction from , whose instance type is "An and a ":ATM M w

s1

s2

s3

s4

t1

t2

t3

t4

S1 S2 S3

T1 T2 T3

x = 11

x = 01

x = 12

x = 02

x = 13

x = 03

x = 14

x = 04

x2

x1

x⏨2

x3 x1
x⏨3

x⏨3

x⏨1 x⏨4

s1

t1

s2

t2

Reduction from , whose instance type is "Just a machine ":ALLTM M

Example of designing a reduction by puttingf the correctness logic first (HW3, problem 3):
M, w ∈ A ≡ M accepts w ⟹ M' x visits all of its states i. e., the states of M' , for some x() TM () ()

 M, w ∉ A ≡ M does not accept w ⟹ for all x() TM [] M' x does not visit all of its states.()

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w()

input x
(ignore x)

execute a stay instructionqrej

⟨M⟩ ↪ M' =
f

if & when it accepts

Simulate M x()

input x
(ignore x)

qrej
execute a stay instruction

x0

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w()

input x
(ignore x)

qrej

x0

Visit every state of M'
_, # / S()

#, # / S()

