
CSE491/596  Categories and Diction, then Examples of Reductions
 
Elements/Objects                               Attributes/predicates/verbs
1. string = list<char>                           (a) "Halts"   - 4            a2 "run forever" - 4, not any inst. of 2    
2. Language = set<string>                  (b) "Decidable"  - 3 and 5
3. Class = set<Language>                   (c) "accepts" - 4
4. Machine                                           (d) "be accepted by ..."   1 meaning , 2 as x ∈ L M( ) L M( )

5. Decision Problem Language      meaning "the language [of strings] accepted by a machine"≡

 
(e) is c.e. --- machine?  class?  The person saying "machine" probably meant to allow for the point that 
a given machine might not halt for all inputs.  The person saying "class" either meant that RE is a class 
of languages, or means that any class of Turing machine languages like P or NP must be a subset of 
RE.  Grammatically, as a matter of diction, only a language can have the attribute of being c.e.  A 
decision problem---?---the preferred term then is partially decidable (on the 'yes' side).
(f) "ends in a '0' " --- ?  Strictly it's only string.  But maybe you have in mind the language  E = x :  x0 {

ends in a .  Or the regular expression .  0} 0 + 1 0( )*

 
Some Common Fallacies:
1. Subsets: "Any subset of a decidable language is decidable."  Exposing it:  is a decidable 𝛴*

language, in fact a regular language, but the mega-undecidable language  is a subset of ALLTM 𝛴*

 
2. "If L is undecidable then L is c.e."
 
3. Intension vs. Extension: "Isn't  the same as ?"  ALLTM 𝛴*

 is the language of codes  of machines  such that .  ALLTM M⟩ M L M = 𝛴( ) *

 
As languages,  and  are disjoint, i.e.,   which is saying that the ALLTM ETM ALLTM ∩  E  =  ∅TM

condition on the set  is incompatible.  ⟨M⟩ :  L M = 𝛴  and L M = ∅( ) * ( )

 
[The recitation went into a long discussion of the fact of the  language not literally "being"  ALLTM 𝛴*

and why it is a proper subset of ---because it includes strings like  for the machine  below 𝛴* ⟨M ⟩1 M1

but not  for the machine  whose language is .⟨M ⟩0 M0 ∅

 
[The last prepared example of the recitation was about how reductions can be "plus and play" when 
you vary particulars of what is done before or after a simulation.  The idea is to trace out the logical 

 

 

0 / 0, R ,( )

1 / 1, R( )

M1

L M = 𝛴( 1) *

0 / 0, R ,( )

1 / 1, R( )

M0

L M = ∅( 0)



analysis that results.  It involved the following problem, which was given for homework in a recent year.  
I originally defined it without the primes, i.e. just saying  everywhere, but explained how that can lead M
to confusion between the source  in the reduction and the "target property."]M
 
OnlyEps
INST: A Turing machine .M''

QUES: Is ?  That is, does  accept  but no other string?L M'' = 𝜖( ) { } M'' 𝜖
 
Here are diagrams of reductions showing  and then .A  ≤  OnlyEpsTM m D  ≤  OnlyEpsTM m

 
 accepts    Thus M w ⟹  L M' = 𝜖( ) { } ⟨M, w⟩ ∈ A  ⟹  ⟨M'⟩ ∈ OnlyEpsTM

.⟨M, w⟩ ∉  A  ⟹  L M' = ∅ ⟹ ⟨M'⟩ ∉ OnlyEpsTM ( )

 
 accepts    Thus: M ⟨M⟩ ⟹  L M'' = 𝛴( ) * ⟨M⟩ ∉ D  ⟹  ⟨M''⟩ ∉ OnlyEpsTM

 does not accept    Thus: M ⟨M⟩ ⟹  L M'' = 𝜖( ) { } ⟨M⟩ ∈ D  ⟹  ⟨M''⟩ ∈ OnlyEpsTM

 
Other variations on the theme can put the test for  after rather than before:x = 𝜖
 

 

 

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w( )

input x

accept x.

if  rejectx ≠ 𝜖

⟨M⟩ ↪ M'' =
g

if & when it accepts

Simulate M M( )

input x

accept x.

if  acceptx = 𝜖

(only  by here)x = 𝜖 (all  by here)x ≠ 𝜖

if acceptsM 𝜖

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w( )

input x

accept x.
⟨M⟩ ↪ M'' =

g

if it accepts within that time

Simulate M M( )

input x

accept x.

if  acceptx = 𝜖

(only  by here)x = 𝜖

if  acceptx = 𝜖

let n = |x|

for up to  stepsn

else reject

accept 

else

accept  iff  is a palindromex x
reject x



 
 accepts M w ⟹ L M' = 𝜖  ⟹  M' ∈  OnlyEps( ) { }

.⟨M, w⟩ ∉  A  ⟹  L M' = ∅ ⟹  M' ∉  OnlyEpsTM ( )

 
all palindromes of length greater the # of steps  took to accept }M ∈ K  ⟹  L M''  =  TM ( ) { M ⟨M⟩

 is nonregular.⟹ L M''( )

 is regular.  Thus , i.e.   M ∉ K  ⟹  L M''  =  ∅ ⟹TM ( ) L M''( ) K  ≤  ∼ ITM m REG D  ≤  ITM m REG

Thus  is not c.e.IREG

 
For self-study, do the correctness logic on these reductions.  Also make the second one work with the 
"delay switch" idea.  It turns out that the  language is in the least  equivalence class of OnlyEps ≡ m

languages that reduce from both  and .  In particular, it is lower than  and .  K D ALLTM TOT
[Technically,  and  and  are all in the same equivalence class under Alan Turing's original OnlyEps K D
reducibility notion, called Turing reductions and written .  But Turing reductions would collapse ≤ T

the left-right dimension (which corresponds to  versus  in logic) down to a single stick, as at right ∃ ∀

below.   So I prefer to avoid them at this point.]
 

 
[We can drop the "TM" subscripts not only when the context is clear but because using Java or any 
other high-level programming language would give exactly the same classification of the analogously-
defined languages, e.g. , , , , etc.  But now we will see machines between AJava DJava KJava OnlyEpsJava
Turing machines and DFAs for which the classifications do change and the distinction between 
"decidable" and "undecidable" is almost on a knife-edge.]
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HW5(1) answer:
 
 
Reversal
INST: A Turing machine .M''

QUES: Is ?  Note: L M'' = L M''( ) ( )R ∅  =  x :  x ∈ ∅  =  ∅R R

 
Here are diagrams of reductions showing  and then .A  ≤  OnlyEpsTM m D  ≤  OnlyEpsTM m

 
 accepts    Thus M w ⟹  L M' = 01( ) { } ⟨M, w⟩ ∈ A  ⟹  ⟨M'⟩ ∉ ReversalTM

.⟨M, w⟩ ∉  A  ⟹  L M' = ∅ ⟹ ⟨M'⟩ ∈ ReversalTM ( )

 
 accepts    Thus: M ⟨M⟩ ⟹  L M'' = 𝛴( ) * ⟨M⟩ ∉ D  ⟹  ⟨M''⟩ ∈ ReversalTM

 does not accept    Thus: M ⟨M⟩ ⟹  L M'' = 01( ) { } ⟨M⟩ ∈ D  ⟹  ⟨M''⟩ ∉ ReversalTM

 
Other variations on the theme can put the test for  after rather than before:x = 01

 

 

 

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w( )

input x

accept x.

if  rejectx ≠ 01

⟨M⟩ ↪ M'' =
g

if & when it accepts

Simulate M M( )

input x

accept x.

if  acceptx = 01

(only  by here)x = 01 (all  by here)x ≠ 01

if acceptsM 𝜖

⟨M, w⟩ ↪ M' =
f

if & when it accepts

Simulate M w( )

input x

accept x.
⟨M⟩ ↪ M'' =

g

if it accepts within that time

Simulate M M( )

input x

accept x.

if  acceptx = 𝜖

(only  by here)x = 01

if  acceptx = 01

let n = |x|

for up to  stepsn

else reject

accept 

else

accept  iff  begins with 0 and ends with 1x x

reject x



 
 accepts M w ⟹ L M' = 𝜖  ⟹  M' ∈  OnlyEps( ) { }

.⟨M, w⟩ ∉  A  ⟹  L M' = ∅ ⟹  M' ∉  OnlyEpsTM ( )

 
all palindromes of length greater the # of steps  took to accept }M ∈ K  ⟹  L M''  =  TM ( ) { M ⟨M⟩

 is nonregular.⟹ L M''( )

 is regular.  Thus , i.e.   M ∉ K  ⟹  L M''  =  ∅ ⟹TM ( ) L M''( ) K  ≤  ∼ ITM m REG D  ≤  ITM m REG

Thus  is not c.e.IREG

 
 
 
Tue 11/29/2022 Review Session
 
HW5: Alternate way to pad a short clause like :u ∨  w( )

.   becomes u ∨  w ∨  z  ∧  u ∨  w ∨  ( ) ( z⏨) w( 0) w ∨ z∨ z'  ∧  w ∨ ∨ z'  ∧  ...( 0 ) ( 0 z⏨ )

 

 
 
 ,𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

one of them is to set  true and  false; then  and  become "don't-cares":x1 x3 x2 x4

 
In Cook-Levin, the only 3-clauses are ones of the form  and those have the property that  ∨  (u⏨  ∨  v⏨ w⏨)

they cannot be satisfied 3x, because of the other clauses  and .  u ∨  w ∨  z( ) v ∨  w ∨  z( )

 

 

x⏨1 x1

x⏨2 x2

x⏨3

x3

x⏨n xn

. .
 . 

. .
 . 

C1

C2

Cm

x3



 
 
Edge-Disjoint Paths
The reduction makes f 𝜙  =  G , s , s , t , t( ) ( 𝜙 1 2 1 2)

 

 
 

 

 

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨4
x4

C1

C2

C3

x⏨3

x1

x⏨2

x3

x1

x2

x⏨1

x⏨3

x⏨4

x⏨1 x1

x⏨2 x2

x⏨3

x3

x⏨n xn

. .
 . 

. .
 . 

C1

C2

Cm

x3

s1

t1

s2

t2



 Here is the whole thing for the formula used before:
 

𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 11 x⏨21 31) ( 12 22 x⏨32) (x⏨13 x⏨33 x⏨43)

 

𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

 
 
 
Reduction from , whose instance type is "An  and a ":ATM M w

 

 

s1

s2

s3

s4

t1

t2

t3

t4

S1 S2 S3

T1 T2 T3

x = 11

x = 01

x = 12

x = 02

x = 13

x = 03

x = 14

x = 04

x2

x1

x⏨2

x3 x1
x⏨3

x⏨3

x⏨1 x⏨4

s1

t1

s2

t2



 
Reduction from , whose instance type is "Just a machine ":ALLTM M

 
Example of designing a reduction by puttingf the correctness logic first (HW3, problem 3):
M, w  ∈  A  ≡  M accepts w ⟹  M' x  visits all of its states i. e.,  the states of M' ,  for some x( ) TM ( ) ( )

 

  M, w  ∉  A  ≡  M does not accept w  ⟹   for all x( ) TM [ ] M' x  does not visit all of its states.( )

 
 

 

 

 

⟨M, w⟩   ↪    M' =
f

if & when it accepts

Simulate M w( )

input x
(ignore x)

execute a stay instructionqrej

⟨M⟩   ↪    M' =
f

if & when it accepts

Simulate M x( )

input x
(ignore x)

qrej
execute a stay instruction

x0

⟨M, w⟩   ↪    M' =
f

if & when it accepts

Simulate M w( )

input x
(ignore x)

qrej

x0

Visit every state of M'
_, # / S( )

#, # / S( )


