
CSE491/596 Extra Notes From Chapters 5--6
 
These are things that were mentioned in briefer form to make the Week 13 lectures flow around Prelim 
II.  This begins with a sizable example of the Hadamard Transform---here illustrated on 4 qubits:
 

 
We have argued that the Hadamard transform is feasible: it is just a column of  Hadamard gates, one n
on each qubit line.  There is, however, one consequence that can be questioned.  We observed that a 
network of Toffoli gates suffices to simulate any Boolean circuit  (of NAND gates etc.) that computes a C

function .  The Toffoli network  actually computes the reversible formf : 0, 1 0, 1{ }n → { }r Cf

 
 .F x , … , x , a , … , a  =  x , … , x , a ⊕ f x , … , a ⊕ f x( 1 n 1 r) ( 1 n 1 ( )1 r ( )r)

 
The matrix  of  is a giant permutation martrix in the  underlying coordinates.  Yet if the Uf Cf 2n+r

Boolean circuit  has  gates, then we reckon that  costs  to build and operate.  Now build the C s Cf O s( )

following circuit, which is illustrated with  and :n = 5 r = 4

 

 

H 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0001 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

0010 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

0011 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1

0100 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

0101 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

0110 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1

0111 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1

1000 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1001 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

1010 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1

1011 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1

1100 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1

1101 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1

1110 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1

1111 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

H u, v  =  -1[ ] ( )u•v



 
What this circuit piece computes is the functional superposition of , defined asf
 

.     =    𝛷f

1

2n

∑
 

x∈ 0,1{ }n

x f x( )

 
The juxtaposition of two kets really is a tensor product.  This sum has exponentially many terms.  It 
seems to preserve an exponential amount of information: the entire truth table of the Boolean function 

 over all arguments .   However:f x( ) x ∈ 0, 1{ }n

 
•  is not an arbitrary or "random" function: it is computed by a small circuit of  NAND gates.f s

• We cannot actually extract an exponential amount of information from .  If we measure it 𝛷f

using the standard basis, we get our argument  back again plus  bits of some sampled x r
function value.  Measuring it in a different basis does not increase the information yield (this is 
part of Holevo's Theorem).  

 
Nevertheless, the question remains of whether some exponential amount of "effort" must go in to the 
creation of .  We will "table" this question and consider the effort to be just  for the Hadamard 𝛷f O n( )

transform plus  for the circuit.O s( )

 
 
Note About Functional Superpositions (cf. sections 6.2 and 6.4)
 
We've seen (on homework) that when  is the Boolean identity function on  bit, then  consists f n = 1 Cf

of just one  gate.  This generalizes for  using one  gate per argument.  ThusCNOT n > 1 CNOT
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computes the functional superposition
 

. 
1

32

∑
 

x∈ 0,1{ }5

x x

 
This is not the same as , because that is the equal superposition over all basis ⊗+++++ +++++

states for -bit binary strings, including all the cases of  where the binary strings  and  of length 10 xy x y

 are different.  An analogy is that for any set  of two or more elements, the Cartesian product of  5 A A

with itself includes ordered pairs  with  but , whereas the functional superposition is x, y( ) x, y ∈ A x ≠ y

like the diagonal of the Cartesian product, namely .  The functional superposition is x, x : x ∈ A{( ) }

entangled, just as we first saw in the case .n = 1

 
If we replace the five  gates by a subcircuit that prepares a general 5-qubit stateH

 
, =  a + a + ⋯ + a + a𝜙 0 00000 1 00001 30 11110 31 11111

 
then the five  gates produceCNOT

 
.D  =  a + a + ⋯ + a + a𝜙 0 0000000000 1 0000100001 30 1111011110 31 1111111111

 
This is not the same as , whose terms have coefficients  for all  and .  IMHO the ⊗𝜙 𝜙 a ai j i j

notation  or  can be unclear about what is meant, though I've freely used  etc. as 𝜙 𝜙 𝜙𝜙 ++

above.  When  is a basis element in the basis used for notation, then there is no difference: both x

 and  have the single term  with coefficient .  ⊗x x D x xx 1 = 12
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The Copy-Uncompute Trick (section 6.3)
 

 

 

 

 



 
Feasible Diagonal Matrices (sections 5.4 and 6.5)
 

We can continue the progression , , by Z =
1 0

0 -1
CZ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 -1

, ,CCZ =

1        

 1       

  1      

   1     

    1    

     1   

      1  

       -1

CCCZ = diag 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1([ ])

 
and so forth.  These are examples of a different kind of conversion of a Boolean function  besides the f

reversible form called  or  above.  This is the matrix  defined for all indices  byF Cf Gf u, v
 

.G u, v  =  f[ ]

0 if u ≠ v

-1 if u = v ∧ f u = 1( )

1 if u = v ∧ f u = 0( )

 
The above are for the -ary AND function.  The  stands for "Grover Oracle", though here I G  AND n G

would rather emphasize that it is a concretely feasible operation.
 
Theorem (6.2): If  is computable by a Boolean circuit with  gates, thgen  can be computed by a f s Gf

quantum circuit of  gates.O s( )

 
When  is polynomial in , this makes a big contrast to  being a -sized diagonal matrix.   s =  s n( ) n Gf 2n

 
 
The Phase Flip Trick (also section 6.5)
 
With reference to the idea of :a = -1( )f u( )

 

 



 

 



 
 
The Deferred Measurement Principle (section 6.6)
 
 
In a picture:

In a picture:
 

 

 



 

 
 
 

 

 

U U

≡




