
CSE491/596, Fall 2023: First Lecture 8/28/23.

[Go over syllabus---discuss differences: --Undecidability, ++Quantum]
[Give out "Survey"]

Try out three ways of teaching: 1. Presentation 2. Overheads, 3. Whiteboard

Presentation---let's jump right in to the definition of DFAs even before you read it in text notes. (Well,
the main knock against it is that it can feel like lecturing by reading from a textbook...)

We will give the dry formal definition before trying to liven it up in a few ways. Note a few cosmetic
differences from the text and other sources. An alphabet is a set of characters, which can be strung
together to make strings over that alphabet. The binary alphabet will serve most purposes in 0, 1{ }

this course; some example strings are , , " " and " " by themselves, and the 0110101000101 1111 0 1

empty string . (lowercase Greek epsilon)𝜖

A deterministic finite automaton (DFA) is a 5-tuple where:M = Q, 𝛴, 𝛿, s, F()

• is a finite set of states.Q

• is a finite alphabet.𝛴

• , a member of , is the start state. [Most texts say .]s Q q0

• , a subset of , is the set of desired final states, also called accepting states.F Q

• is a function from to .𝛿 Q × 𝛴 Q

class DFA {

 set<State> Q;

 set<char> Sigma;

 State s; //start state

 set<State> F; //accepting states

 //State delta(State p, char c); //is this sensible?

 set<triple<State, char, State> > delta;
}

Indeed, in the Turing Kit software---written in Java by Mark Grimaldi while a student in this course in
1997---there is such a class. One change needed in "delta", however, motivates ways in which C# and
Scala (among others) veered off from the original Java. As delta, it is a class method which makes it
the same function for every DFA instance. It needs to be an instance method. In C++, one could do
this "primitively" by making a pointer-to-member function field:

 State (*delta)(State p, char c);

Or, more cleanly (but also more fussily), one can define a separate function-object class, say Delta,
with a method apply(State p, char c), and have Delta delta; be the class field. However, I

will favor a third way that will harmonize better with next week's definition of NFAs and that reflects the
idea of a program being a set of instructions. The abstract fact is that every function can be identified f

with the set of ordered pairs such that . The delta function in this case has two a, b() f a = b()

arguments, so we get ordered triples instead of pairs. We can just treat these triples as instance data
by writing:

 set<triple<State, char, State> > delta;

Every DFA instance will then automatically have its own set. Thus I prefer the definition of DFA to
specify:

• , the set of instructions, aka. tuples, is a subset of . 𝛿 Q × 𝛴 × Q()

• In a DFA, for every and , there is a unique such that .p ∈ Q c ∈ 𝛴 q ∈ Q p, c, q ∈ 𝛿()

Relaxing the last clause will define an NFA ("without -arcs"). Another reason to think of instructions is 𝜖

how the machines look graphically:

There is a nice web applet for drawing DFAs, http://madebyevan.com/fsm/ by Evan Wallace, but it does
not execute the machines you draw. That's where the Turing Kit comes in.

Here are pictures of two DFAs, which will also make the segue to using the overhead projector:

p qc Self-loops are possible: p c

p, c, p()p, c, q()

http://madebyevan.com/fsm/

