
CSE491/596 Fall 2023, Lecture 1 Sept.: "The Formal Languages Ladder"
 
The basic object in this course is a character.  The slogan "It From Bit" expresses that the act of 
distinguishing between two (or more) symbols is more fundamental than the notion of number or 
geometry.  Computing arithmetical operations  etc. employs rules for manipulating the symbols + *

standing for individual bits or digits.  We will call the symbol type char and its members (however big a 
set of characters we allow) are "type 0" objects.
 

• An alphabet is a set of characters.  In C++/Java terms, set<char>.
• A string is a sequence of characters.  In C++/Java terms, a string has type list<char>.

 
We will presume that alphabets and strings are finite.  (But infinite alphabets and infinite strings over 
any kind of alphabet are topics studied in other areas of CS theory.)  We use a capital Greek  to 𝛴

denote one.  This may be confusing---  usually stands for a sum, and we will have those too.  Much of 𝛴

the time we will have  or .  The set of all possible finite strings over an alphabet 𝛴 =  0, 1{ } 𝛴 =  a, b{ }

 is denoted by , where the star stands for zero-or-more characters.𝛴 𝛴
*

 
Finite binary strings can denote integers, either in standard notation 0, 1, 10, 11, 100, 101, 110, 111 ... 
or in "economical" notation
 
𝜖 = 1,  "0" = 2,  "1" = 3,  00 = 4,  01 = 5,  10 = 6,  11 = 7,  000 = 8,  ...

 
The latter gives a bijection between  and the set  of positive natural numbers.  It simply rubs 0, 1{ }*

N
+

out the initial ' ' from the standard binary representation.  There is also 2-adic notation which shifts 1

things one place so that  stands for 0, thus giving a bijection between  and , but I don't 𝜖 0, 1{ }*
N

encourage it because it is better to think of  as like the number .  This furthers an analogy between 𝜖 1

the concatenation  of two strings and multiplication, in which .  The main x ⋅ y x ⋅ 𝜖 =  𝜖 ⋅ x =  x
difference is that concatenation is not commutative, e.g.
 

.011 ⋅ 10 =  01110 ≠  10 ⋅ 011 =  10011

 
(But hey, matrix multiplication  usually  is not commutative either, and we still call it AB =  C ≠ BA
"multiplication."  In the quantum section we will see strong analogies between concatenation and matrix 
operations, even more particularly the matrix tensor product .)  Strings and integers are A⊗ B
collectively called "type 1" objects.
 

• A language is a set of strings:  set<string>.
 
This is "barebones"---it's like saying the English language equals the set of words in some English 
dictionary.  The languages of interest will most often be infinite.  Note that we already defined  which 𝛴

*

is the infinite language of all finite strings.  Languages are "type 2".  So are functions defined on (whole 
numbers or) strings.  This is because a function  is identified by its graph  which is the set f Rf

 

 



.  The pairs can be coded up as individual strings---with or without the help of some x, y :  f x = y{( ) ( ) }

extra characters such as writing  or taking the parens and commas as literal symbols---so the x#y

relation  becomes a language.Rf

 
If language = set<string> isn't "up there" enough, there's also the term that a class is a set of 
languages.  The first major example will be the class REG of regular languages.  This is "type 3".  We 
will also have hierarchies of classes, which gets into "type 4", but our "ladder of abstraction" will stop 
there.
 
The empty language, like any empty set, is denoted by .  The empty string will be denoted by  ∅ 𝜖

(Greek lowercase epsilon) in this course.  [Other sources---including the above paper---use  (Greek 𝜆

lowercase lambda) for the empty string.  I will often mention notational variants in sources you may see 
on the Web.]
 
What's the difference between  and ?  First, the former is a set, the other a string.  Second, we ∅ 𝜖

will see the difference is like that between the numerical 0 and 1 as numbers.  Observe:
 

• The concatenation  of a string  and a char  is the string .  For example, x ⋅ c x c xc

.  An English rendering of  is "and then".aab ⋅ a =  aaba ⋅

• The concatenation  of strings  and  is the string .  E.g., .x ⋅ y x y xy aab ⋅ aba =  aababa

• This is the same as what you get by "catting on" to  the chars in  one at a time.x y

• If , then  has no chars, so the last point is a no-op.  So:  is a general rule, for y =  𝜖 y x ⋅ 𝜖 =  x

all strings .  Likewise,  is a general rule.  That's how  is like 1.  (Well, this makes  x 𝜖 ⋅ x =  x 𝜖 ⋅

analogous to multiplication, but it's not commutative: .)aab ⋅ aba ≠  aba ⋅ aab
 
To really compare it with , we need to involve  in a language.  So consider: .  This is a set whose ∅ 𝜖 𝜖{ }

only member is a string, so it is a set<string>, which is a language.  Next we need to "lift" the 
concatenation operation up to work between languages.  This needs a definition:
 
Definition 1: Given any two languages  and  (their being "over" the same alphabet  is understood A B 𝛴

here), their concatenation is the language  defined byA ⋅ B
 

.A ⋅ B =  x ⋅ y :  x ∈ A ∧  y ∈ B{ }

 
An intuition for this is that strings are like streams of data from sensors, and languages  are A, B, …

tests telling whether chunks of data meet respective conditions for being OK.  So a string  passes the z

 test if it consists of a portion  that passes the  test and then a portion  that passes the  test. A ⋅  B x A y B

 Here's a little swervy test of notation: Does ?  The answer is that this is too A ⋅A =  x ⋅ x :  x ∈ A{ }

narrow.  Suppose  represents the condition of being a digit character (\dA =  0, 1, 2, 3, 4, 5, 6, 7, 8, 9{ }

 if you've done string-matching).  Then  should allow any two digits, not just the doubled cases A ⋅A

.  Instead, .00, 11, … , 99 A ⋅A =  x ⋅ y :  x, y ∈ A{ }

 

 

 



Having understood that about Definition 1, let us try the "edge cases"  and :B =  ∅ B =  𝜖{ }

 
• A ⋅∅  = x ⋅ y :  x ∈ A ∧  y ∈ ∅  =  x ⋅ y :  x ∈ A ∧  false  =  x ⋅ y :  false  =  ∅{ } { } { }

 
• A ⋅ 𝜖  =  x ⋅ y :  x ∈ A ∧  y ∈ 𝜖  =  x ⋅ 𝜖 :  x ∈ A  =  x :  x ∈ A  =  A.{ } { { }} { } { }

 
Likewise,  for any language , whereas  always.  Intuitively,  says ∅ ⋅A =  ∅ A 𝜖 ⋅A =  A{ } A ⋅∅ =  ∅

that if a sensor at a required stage fails then the whole test series fails.  Whereas,  means that A ⋅ 𝜖{ }

the second condition passes automatically on the heels of the first, without needing (or allowing) any 
more data to be taken.  
 
Now let us abbreviate  as ,  , and so on.  This is OK even though A ⋅A A2 A ⋅A ⋅A =  A3

concatenation isn't commutative on languages either---hey, neither is matrix multiplication, but  is A3

like raising a matrix to the third power, and that's fine.  Just like with numbers and matrices, strings and 
languages obey the additive law of powers: .  A ⋅A  =  Ai j i+j

 
We have , of course, but what is ?  In particular, what is ?  Well, suppose we wrote a A  =  A1 A0

∅
0

program loop to fetch and test a mandated number  of chunks of sensor data?n
 
for (int i = 0; i < n; i++) {

   string xi = getNewSensorData();

   if (!A(xi)) { throw Failure; }

}

 
If we invoke this loop with a given number  then it will perform  tests and allow processing to n n

continue without exception only if all  of the tests pass.  n
 

• If  and we enter the loop, then the body surely fails, finito.A =  ∅

• If  then what happens?  The loop is a fall-through.  Do we die?  No: processing continues n =  0

undisturbed.
• So what happens if  and ?  The same as the second case: we never get put to A =  ∅ n =  0

the death test, and processing continues undisturbed.
 
In the third case, nor is any data taken.  Thus this is exactly the same situation as when concatenating 
with .  It is a "free pass".  So  for any language , and in particular:𝜖{ } A  =  𝜖0 { } A
 

.∅  =  𝜖0 { }

 
Well, this is just like the numerical convention .  In all cases, this is needed to make the additive 0  =  10

power law  work even when .  A ⋅A  =  Ai j i+j j =  0

 
[If time allows, tell story at https://rjlipton.wordpress.com/2015/02/23/the-right-stuff-of-emptiness/ .]

 

 

https://rjlipton.wordpress.com/2015/02/23/the-right-stuff-of-emptiness/



