
CSE491/596 Fall 2023, Lecture 1 Sept.: "The Formal Languages Ladder"

The basic object in this course is a character. The slogan "It From Bit" expresses that the act of
distinguishing between two (or more) symbols is more fundamental than the notion of number or
geometry. Computing arithmetical operations etc. employs rules for manipulating the symbols + *

standing for individual bits or digits. We will call the symbol type char and its members (however big a
set of characters we allow) are "type 0" objects.

• An alphabet is a set of characters. In C++/Java terms, set<char>.
• A string is a sequence of characters. In C++/Java terms, a string has type list<char>.

We will presume that alphabets and strings are finite. (But infinite alphabets and infinite strings over
any kind of alphabet are topics studied in other areas of CS theory.) We use a capital Greek to 𝛴

denote one. This may be confusing--- usually stands for a sum, and we will have those too. Much of 𝛴

the time we will have or . The set of all possible finite strings over an alphabet 𝛴 = 0, 1{ } 𝛴 = a, b{ }

 is denoted by , where the star stands for zero-or-more characters.𝛴 𝛴
*

Finite binary strings can denote integers, either in standard notation 0, 1, 10, 11, 100, 101, 110, 111 ...
or in "economical" notation

𝜖 = 1, "0" = 2, "1" = 3, 00 = 4, 01 = 5, 10 = 6, 11 = 7, 000 = 8, ...

The latter gives a bijection between and the set of positive natural numbers. It simply rubs 0, 1{ }*

N
+

out the initial ' ' from the standard binary representation. There is also 2-adic notation which shifts 1

things one place so that stands for 0, thus giving a bijection between and , but I don't 𝜖 0, 1{ }*
N

encourage it because it is better to think of as like the number . This furthers an analogy between 𝜖 1

the concatenation of two strings and multiplication, in which . The main x ⋅ y x ⋅ 𝜖 = 𝜖 ⋅ x = x
difference is that concatenation is not commutative, e.g.

.011 ⋅ 10 = 01110 ≠ 10 ⋅ 011 = 10011

(But hey, matrix multiplication usually is not commutative either, and we still call it AB = C ≠ BA
"multiplication." In the quantum section we will see strong analogies between concatenation and matrix
operations, even more particularly the matrix tensor product .) Strings and integers are A⊗ B
collectively called "type 1" objects.

• A language is a set of strings: set<string>.

This is "barebones"---it's like saying the English language equals the set of words in some English
dictionary. The languages of interest will most often be infinite. Note that we already defined which 𝛴

*

is the infinite language of all finite strings. Languages are "type 2". So are functions defined on (whole
numbers or) strings. This is because a function is identified by its graph which is the set f Rf

. The pairs can be coded up as individual strings---with or without the help of some x, y : f x = y{() () }

extra characters such as writing or taking the parens and commas as literal symbols---so the x#y

relation becomes a language.Rf

If language = set<string> isn't "up there" enough, there's also the term that a class is a set of
languages. The first major example will be the class REG of regular languages. This is "type 3". We
will also have hierarchies of classes, which gets into "type 4", but our "ladder of abstraction" will stop
there.

The empty language, like any empty set, is denoted by . The empty string will be denoted by ∅ 𝜖

(Greek lowercase epsilon) in this course. [Other sources---including the above paper---use (Greek 𝜆

lowercase lambda) for the empty string. I will often mention notational variants in sources you may see
on the Web.]

What's the difference between and ? First, the former is a set, the other a string. Second, we ∅ 𝜖

will see the difference is like that between the numerical 0 and 1 as numbers. Observe:

• The concatenation of a string and a char is the string . For example, x ⋅ c x c xc

. An English rendering of is "and then".aab ⋅ a = aaba ⋅

• The concatenation of strings and is the string . E.g., .x ⋅ y x y xy aab ⋅ aba = aababa

• This is the same as what you get by "catting on" to the chars in one at a time.x y

• If , then has no chars, so the last point is a no-op. So: is a general rule, for y = 𝜖 y x ⋅ 𝜖 = x

all strings . Likewise, is a general rule. That's how is like 1. (Well, this makes x 𝜖 ⋅ x = x 𝜖 ⋅

analogous to multiplication, but it's not commutative: .)aab ⋅ aba ≠ aba ⋅ aab

To really compare it with , we need to involve in a language. So consider: . This is a set whose ∅ 𝜖 𝜖{ }

only member is a string, so it is a set<string>, which is a language. Next we need to "lift" the
concatenation operation up to work between languages. This needs a definition:

Definition 1: Given any two languages and (their being "over" the same alphabet is understood A B 𝛴

here), their concatenation is the language defined byA ⋅ B

.A ⋅ B = x ⋅ y : x ∈ A ∧ y ∈ B{ }

An intuition for this is that strings are like streams of data from sensors, and languages are A, B, …

tests telling whether chunks of data meet respective conditions for being OK. So a string passes the z

 test if it consists of a portion that passes the test and then a portion that passes the test. A ⋅ B x A y B

 Here's a little swervy test of notation: Does ? The answer is that this is too A ⋅A = x ⋅ x : x ∈ A{ }

narrow. Suppose represents the condition of being a digit character (\dA = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9{ }

 if you've done string-matching). Then should allow any two digits, not just the doubled cases A ⋅A

. Instead, .00, 11, … , 99 A ⋅A = x ⋅ y : x, y ∈ A{ }

Having understood that about Definition 1, let us try the "edge cases" and :B = ∅ B = 𝜖{ }

• A ⋅∅ = x ⋅ y : x ∈ A ∧ y ∈ ∅ = x ⋅ y : x ∈ A ∧ false = x ⋅ y : false = ∅{ } { } { }

• A ⋅ 𝜖 = x ⋅ y : x ∈ A ∧ y ∈ 𝜖 = x ⋅ 𝜖 : x ∈ A = x : x ∈ A = A.{ } { { }} { } { }

Likewise, for any language , whereas always. Intuitively, says ∅ ⋅A = ∅ A 𝜖 ⋅A = A{ } A ⋅∅ = ∅

that if a sensor at a required stage fails then the whole test series fails. Whereas, means that A ⋅ 𝜖{ }

the second condition passes automatically on the heels of the first, without needing (or allowing) any
more data to be taken.

Now let us abbreviate as , , and so on. This is OK even though A ⋅A A2 A ⋅A ⋅A = A3

concatenation isn't commutative on languages either---hey, neither is matrix multiplication, but is A3

like raising a matrix to the third power, and that's fine. Just like with numbers and matrices, strings and
languages obey the additive law of powers: . A ⋅A = Ai j i+j

We have , of course, but what is ? In particular, what is ? Well, suppose we wrote a A = A1 A0

∅
0

program loop to fetch and test a mandated number of chunks of sensor data?n

for (int i = 0; i < n; i++) {

 string xi = getNewSensorData();

 if (!A(xi)) { throw Failure; }

}

If we invoke this loop with a given number then it will perform tests and allow processing to n n

continue without exception only if all of the tests pass. n

• If and we enter the loop, then the body surely fails, finito.A = ∅

• If then what happens? The loop is a fall-through. Do we die? No: processing continues n = 0

undisturbed.
• So what happens if and ? The same as the second case: we never get put to A = ∅ n = 0

the death test, and processing continues undisturbed.

In the third case, nor is any data taken. Thus this is exactly the same situation as when concatenating
with . It is a "free pass". So for any language , and in particular:𝜖{ } A = 𝜖0 { } A

.∅ = 𝜖0 { }

Well, this is just like the numerical convention . In all cases, this is needed to make the additive 0 = 10

power law work even when . A ⋅A = Ai j i+j j = 0

[If time allows, tell story at https://rjlipton.wordpress.com/2015/02/23/the-right-stuff-of-emptiness/ .]

https://rjlipton.wordpress.com/2015/02/23/the-right-stuff-of-emptiness/

