
CSE491/596 Lecture Wed. 6 Sept.: Regular Expressions and FAs
 

 
 

 

 

Built up from characters and the empty string 𝜖 or 𝜆( )

via the operations  (also written  or |), , and :+ ∪ ⋅
*

this  that: this or that+

this  that: this followed by that⋅

(this)  : zero or more occurrences of this.  Examples:*

 
a + b ⋅ a + c  =  aa +  ac +  ba +  bc( ) ( )

a + bc  =  𝜖,  a,  bc,  aa,  abc,  bcbc,  bca,  aaa,  ...( )* { } But not  for instance.bac

00  =  𝜖,  00,  0000,  ...  =  0  :  n is even .( )* { } n

11 1 =  1,  111,  11111,  ...  =  1 :  n is odd .( )* { n

Now how about strings over {0,1} containing an odd number of 1s?

Try even 1s first: 0 10 10 .* * *
*

Then add a 1 to make it odd:   Is that good?  Sound?  Comprehensive?0 10 10 1.* * *
*

(needs to allow ending in 0s)   Note incidentaly that .0 0  =  0* * *

Economical is: .  0 10 1 0 10* *
*

* *

How about We can try x ∈  0, 1  :  ?  { }* every 5th char of x from the first is a 1

1 0 + 1 .( )4
*

But this forces the string to have length a multiple of 5.  To allow other lengths, try:

   [Will pause for why it works.]1 0 + 1 𝜖 +  1 𝜖 + 0 + 1 𝜖 + 0 + 1 𝜖 + 0 + 1( )4
*
( ( )( )( ))

0 + 01 ⋅ 10 + 0  =  010 +  00 +  0110 ( ) ( )

1 11  is equivalent.( )*

This was not comprehensive, did not match 0, 

Fixing the even case, use 0 10 1 0 .* *
*

*

0
0



 
Here is the DFA  that was referred to, from the first-day lecture in 2021 :M5,0

 

 

 

Now how do we apply these ideas to make a regular expression for Wed.'s
language  L(M ) =  x :  x has an odd # of 1s in positions ≡ 2 5 ?5,2 { mod }

First, we need at least 3 chars, to get at least one 1 in such a position.
The first two such chars are arbitrary:  Then we see the equation:0 + 1 .( )2

L(M ) =  0 + 1 ⋅ L(M )5,2 ( )2
5,0

Thus we can focus on "blocks" of the form  or  Z =  0 0 + 1( )4 I =  1 0 + 1 .( )4

Take our previous "template" for an odd number of 1's and sub. 0 by , 1 by : Z I

L(M ) =  Z IZ I Z IZ5,0
* *

*
* *

But this has another "overkill" problem: The last 1 in a multiple-of-5 position
need not be followed by 4 chars.  So instead define Then:Y =  0 + 1 0.  ( )4

L(M ) =  0 + 1 ⋅ Z IZ I Z 1Y 𝜖 + 0 + 1 .5,2 ( )2 * *
*

* *( )4

=  0 + 1 ⋅ 0 0 + 1 1 0 + 1 0 0 + 1 1 0 + 1 0 0 + 1 1 0 + 1 0 𝜖 + 0 + 1 .( )2 ( )4
*

( )4 ( )4
*

( )4
*

( )4
*

( )4
*
( )4

Yuck---?---!  We got it by top-down reasoning---but maybe there's a better way...

https://cse.buffalo.edu/~regan/cse491596/CSE491596lect083120.pdf


 
If we start this machine up in state  then we get : the machine either gets just zero or one char q3 M5,2

and accepts, or it gets two chars corresponding to the initial  and then goes into the same 0 + 1( )2

machinations as .M5,0

 

 




