
CSE491/596 Lecture Wed. 6 Sept.: Regular Expressions and FAs

Built up from characters and the empty string 𝜖 or 𝜆()

via the operations (also written or |), , and :+ ∪ ⋅
*

this that: this or that+

this that: this followed by that⋅

(this) : zero or more occurrences of this. Examples:*

a + b ⋅ a + c = aa + ac + ba + bc() ()

a + bc = 𝜖, a, bc, aa, abc, bcbc, bca, aaa, ...()* { } But not for instance.bac

00 = 𝜖, 00, 0000, ... = 0 : n is even .()* { } n

11 1 = 1, 111, 11111, ... = 1 : n is odd .()* { n

Now how about strings over {0,1} containing an odd number of 1s?

Try even 1s first: 0 10 10 .* * *
*

Then add a 1 to make it odd: Is that good? Sound? Comprehensive?0 10 10 1.* * *
*

(needs to allow ending in 0s) Note incidentaly that .0 0 = 0* * *

Economical is: . 0 10 1 0 10* *
*

* *

How about We can try x ∈ 0, 1 : ? { }* every 5th char of x from the first is a 1

1 0 + 1 .()4
*

But this forces the string to have length a multiple of 5. To allow other lengths, try:

 [Will pause for why it works.]1 0 + 1 𝜖 + 1 𝜖 + 0 + 1 𝜖 + 0 + 1 𝜖 + 0 + 1()4
*
(()()())

0 + 01 ⋅ 10 + 0 = 010 + 00 + 0110 () ()

1 11 is equivalent.()*

This was not comprehensive, did not match 0,

Fixing the even case, use 0 10 1 0 .* *
*

*

0
0

Here is the DFA that was referred to, from the first-day lecture in 2021 :M5,0

Now how do we apply these ideas to make a regular expression for Wed.'s
language L(M) = x : x has an odd # of 1s in positions ≡ 2 5 ?5,2 { mod }

First, we need at least 3 chars, to get at least one 1 in such a position.
The first two such chars are arbitrary: Then we see the equation:0 + 1 .()2

L(M) = 0 + 1 ⋅ L(M)5,2 ()2
5,0

Thus we can focus on "blocks" of the form or Z = 0 0 + 1()4 I = 1 0 + 1 .()4

Take our previous "template" for an odd number of 1's and sub. 0 by , 1 by : Z I

L(M) = Z IZ I Z IZ5,0
* *

*
* *

But this has another "overkill" problem: The last 1 in a multiple-of-5 position
need not be followed by 4 chars. So instead define Then:Y = 0 + 1 0. ()4

L(M) = 0 + 1 ⋅ Z IZ I Z 1Y 𝜖 + 0 + 1 .5,2 ()2 * *
*

* *()4

= 0 + 1 ⋅ 0 0 + 1 1 0 + 1 0 0 + 1 1 0 + 1 0 0 + 1 1 0 + 1 0 𝜖 + 0 + 1 .()2 ()4
*

()4 ()4
*

()4
*

()4
*

()4
*
()4

Yuck---?---! We got it by top-down reasoning---but maybe there's a better way...

https://cse.buffalo.edu/~regan/cse491596/CSE491596lect083120.pdf

If we start this machine up in state then we get : the machine either gets just zero or one char q3 M5,2

and accepts, or it gets two chars corresponding to the initial and then goes into the same 0 + 1()2

machinations as .M5,0

