Built up from characters and the empty string (ϵ or λ)
via the operations $+($ also written \cup or $\mid), \cdot$, and *:
this + that: this or that
this - that: this followed by that
(this)* : zero or more occurrences of this. Examples:
$(a+b) \cdot(a+c)=a a+a c+b a+b c \quad(0+01) \cdot(10+0)=010+00+0110$
$(a+b c)^{*}=\{c, a, b c, a a, a b c, b c b c, b c a, a a a, \ldots\} \quad$ But not $b a c$ for instance.
$(00)^{*}=\{\epsilon, 00,0000, \ldots\}=\left\{0^{n}: n\right.$ is even $\}$.
$(11)^{*} 1=\left\{1,111,11111, \ldots=\left\{1^{n}: n\right.\right.$ is odd $\}$. $1(11)^{*}$ is equivalent.
Now how about strings over $\{0,1\}$ containing an odd number of 1 s ?
Try even 1 s first: $\left(0^{*} 10^{*} 10^{*}\right)^{*}$. Fixing the even case, use $\left(0^{*} 10^{*} 1\right)^{*} 0^{*}$.

Then add a 1 to make it odd: $\left(0^{*} 10^{*} 10^{*}\right)^{*} 1$. Is that good? Sound? Comprehensive?
(needs to allow ending in 0 s) Note incidentaly that $0^{*} 0^{*}=0^{*}$.
Economical is: $\left(0^{*} 10^{*} 1\right)^{*} 0^{*} 10^{*}$.
This was not comprehensive, did not match 0 ,
How about $\left\{x \in\{0,1\}^{*}\right.$: every 5 th char of x from the first is a 1$\}$? We can try $\left(1(0+1)^{4}\right)^{*}$.
But this forces the string to have length a multiple of 5 . To allow otherlengths, try:$\left(1(0+1)^{4}\right)^{*}(\epsilon+1(\epsilon+0+1)(\epsilon+0+1)(\epsilon+0+1))$ [Will pause for why it works.]

Now how do we apply these ideas to make a regular expression for Wed.'s language $L\left(M_{5,2}\right)=\{x: x$ has an odd $\#$ of 1 s in positions $\equiv 2 \bmod 5\}$?

First, we need at least 3 chars, to get at least one 1 in such a position.
The first two such chars are arbitrary: $(0+1)^{2}$. Then we see the equation:

$$
L\left(M_{5,2}\right)=(0+1)^{2} \cdot L\left(M_{5,0}\right)
$$

Thus we can focus on "blocks" of the form $Z=0(0+1)^{4}$ or $I=1(0+1)^{4}$.
Take our previous "template" for an odd number of 1 's and sub. 0 by $Z, 1$ by I :

$$
L\left(M_{5,0}\right)=\left(Z^{*} I Z^{*} I\right)^{*} Z^{*} I Z^{*}
$$

But this has another "overkill" problem: The last 1 in a multiple-of-5 position need not be followed by 4 chars. So instead define $Y=(0+1)^{4} 0$. Then:

$$
\begin{gathered}
L\left(M_{5,2}\right)=(0+1)^{2} \cdot\left(Z^{*} I Z^{*} I\right)^{*} Z^{*} 1 Y^{*}(\epsilon+0+1)^{4} . \\
=(0+1)^{2} \cdot\left(\left(0(0+1)^{4}\right)^{*} 1(0+1)^{4}\left(0(0+1)^{4}\right)^{*} 1(0+1)^{4}\right)^{*}\left(0(0+1)^{4}\right)^{*} 1\left((0+1)^{4} 0\right)^{*}(\epsilon+0+1)^{4} .
\end{gathered}
$$

Yuck---?---! We got it by top-down reasoning---but maybe there's a better way...

Here is the DFA $M_{5,0}$ that was referred to, from the first-day lecture in 2021 :

If we start this machine up in state q_{3} then we get $M_{5,2}$: the machine either gets just zero or one char and accepts, or it gets two chars corresponding to the initial $(0+1)^{2}$ and then goes into the same machinations as $M_{5,0}$.

