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The formal definition of a The formal definition of a finite automatonfinite automaton is a 5-tuple (i.e., an object)  is a 5-tuple (i.e., an object)  where: where:N N ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(( ))

• •  is a finite set of  is a finite set of states                                                                           states                                                                           set<State> Qset<State> Q;;QQ

• •  is the  is the input alphabeinput alphabet                                                                              t                                                                              set<char> Sigmaset<char> Sigma;;𝛴𝛴

• • , a member of , a member of , is the , is the start statestart state (also called  (also called )                                  )                                  State sState s;;ss QQ qq00

• • , a subset of , a subset of , is the set of , is the set of accepting accepting states (also called states (also called finalfinal states)   states)  set<State> Fset<State> F;;FF QQ

• •  is a finite set of is a finite set of instructions instructions (also called  (also called transitionstransitions) of the form ) of the form  where  where  and  and ; an; an  𝛿𝛿 pp,, cc,, qq(( )) pp,, q q ∈∈  Q Q c c ∈∈  𝛴 𝛴

NFA with NFA with -transitions (NFA-transitions (NFA ) also allows ) also allows       set<Triple<State,char,State> > deltaset<Triple<State,char,State> > delta;;𝜖𝜖
𝜖𝜖

pp,, 𝜖𝜖,, qq ..(( ))

The machine is The machine is deterministicdeterministic (a DFA) if  (a DFA) if .  Else it is "properly".  Else it is "properly"  ∀∀pp ∈∈  Q Q ∀∀ c  c ∈∈(( ))(( 𝛴𝛴)) ∃∃!q !q ∈∈  Q Q ::   pp,, cc,, qq   ∈∈  𝛿 𝛿(( )) (( ))

nondeterministicnondeterministic (an NFA). (an NFA).
  
So DFA is a special case of an NFA.  When we have a DFA So DFA is a special case of an NFA.  When we have a DFA , we can regard , we can regard  as a function from  as a function from  to  to ..    MM 𝛿𝛿 Q Q ××  𝛴 𝛴 QQ

With an NFA, we could regard With an NFA, we could regard  as a function from  as a function from  to  to , which is the set of all subsets of , which is the set of all subsets of  and called and called  𝛿𝛿 Q Q ××  𝛴 𝛴 22QQ QQ

the the power setpower set of  of .  But in most cases I prefer to think of .  But in most cases I prefer to think of  as a set of instructions---the same as "trominoes" in my as a set of instructions---the same as "trominoes" in my  QQ 𝛿𝛿

previous lecture.previous lecture.    
  
Say that Say that   can processcan process a string  a string   fromfrom state  state   toto state  state  if there is a sequence of instructions if there is a sequence of instructionsNN xx pp qq

,,   pp,, cc ,, qq qq ,, cc ,, qq qq ,, cc ,, qq ⋯⋯ qq ,, cc ,, qq qq(( 11 11))(( 11 22 22))(( 22 33 33)) (( m-2m-2 m-1m-1 m-1m-1))(( m-1m-1 cc ,, qqmm ))

such that such that .  Then we write .  Then we write  (with  (with  understood).  Now formally define: understood).  Now formally define:cc cc ⋯⋯ cc   ==  x x11 22 mm x x ∈∈  L Lpqpq NN

..LL NN   ==   ∪∪  L L(( )) f ∈Ff ∈F sfsf

If If  has only one accepting state (a design goal we can meet for NFAs but often not for DFAs) then the language has only one accepting state (a design goal we can meet for NFAs but often not for DFAs) then the language  NN

is just is just . We will find the . We will find the  concept especially handy with "GNFAs" on Fri. concept especially handy with "GNFAs" on Fri.LLsfsf LLpqpq
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x x ==  $DD $DD
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deaddead

 but  but  is not accepting is not acceptingx x ∈∈  L Ls,deads,dead deaddead

so so  is not in the language. is not in the language.xx

Without the dead state and arc to it, the NFA Without the dead state and arc to it, the NFA on input on input  would "crash" in state  would "crash" in state     N N x x ==  $DD $DD ss..

Even though Even though  is an accepting state (and even though this would count as legal termination by is an accepting state (and even though this would count as legal termination byss

a Turing machine), not all of a Turing machine), not all of  would be processed, so it does not count in the FA's language.  would be processed, so it does not count in the FA's language. xx

With the dead state present, With the dead state present,  gets processed to  gets processed to , but , but  so  so  still. still.xx deaddead dead dead ∉∉  F F x x ∉∉  L L NN(( ))

NN ::



  
Regular Expressions and Their Corresponding NFAs (with Regular Expressions and Their Corresponding NFAs (with -transitions):-transitions):𝜖𝜖

  

  

(B1) (B1)  is a regexp;  is a regexp; ∅∅ LL ∅∅   ==  ∅ ∅;;       N      N   ==   (( )) ∅∅
ss ff 𝛿 𝛿 ==  ∅ ∅(( ))

(B2) (B2)  is a regexp;  is a regexp; 𝜖𝜖 LL 𝜖𝜖   ==   𝜖𝜖 ;;       N      N   ==   (( )) {{ }} 𝜖𝜖 ss ff
𝜖𝜖

For all chars For all chars ::c c ∈∈  𝛴 𝛴

(B3)(B3)   is a regexp;  is a regexp; cc LL cc   ==   cc ;;       N      N   ==   (( )) {{ }} cc
ss ff

cc

This completes the This completes the basisbasis of an  of an inductive definitioninductive definition of regular expressions. Now let  of regular expressions. Now let  and  and   𝛼𝛼 𝛽𝛽

be any two regular expressions, with languages be any two regular expressions, with languages  and  and .  By .  By inductiveinductiveA A ==  L L 𝛼𝛼(( )) B B ==  L L 𝛽𝛽(( ))

hypothesishypothesis ( (IHIH) we have NFAs ) we have NFAs  and  and  such that  such that  and  and .  Then:.  Then:NN𝛼𝛼 NN𝛽𝛽 LL NN   ==  A A(( 𝛼𝛼)) LL NN   ==  B B(( 𝛽𝛽))

Now to complete the Now to complete the induction caseinduction case (I1) we need to show how to build an NFA (I1) we need to show how to build an NFA    such such𝜖𝜖 NN𝛾𝛾

that that .  What we have to work with is (are) .  What we have to work with is (are)  and  and .  We know they have.  We know they haveLL NN   ==  L L 𝛾𝛾(( 𝛾𝛾)) (( )) NN𝛼𝛼 NN𝛽𝛽

start states we can call start states we can call  and  and .  Taking a cue from the base case NFAs, and mainly for .  Taking a cue from the base case NFAs, and mainly for ss𝛼𝛼 ss𝛽𝛽
convenience, we may suppose they have unique accepting states convenience, we may suppose they have unique accepting states  and  and . Besides that,. Besides that,ff𝛼𝛼 ff𝛽𝛽
we make no assumptions about their internal structure, so we draw them as "blobs": we make no assumptions about their internal structure, so we draw them as "blobs": 

(I1) (I1)  is a regexp;  is a regexp; 𝛾𝛾  ==  𝛼  𝛼 ++  𝛽 𝛽 LL 𝛾𝛾   ==  A  A ∪∪  B B..(( ))

ss𝛼𝛼 ff𝛼𝛼 ss𝛽𝛽 ff𝛽𝛽NN𝛼𝛼 NN𝛽𝛽

The goal is to connect them together to make The goal is to connect them together to make  with needed properties, also for the cases: with needed properties, also for the cases:NN𝛾𝛾

(I2) (I2)  is a regexp;  is a regexp; 𝛾𝛾  ==  𝛼  𝛼 ⋅⋅  𝛽 𝛽 LL 𝛾𝛾   ==  A  A ⋅⋅  B B..(( ))

(I3) (I3)  is a regexp;  is a regexp; 𝛾𝛾  ==  𝛼 𝛼** LL 𝛾𝛾   ==  A A ..(( )) ** (In I3 we have only (In I3 we have only  given.) given.)NN𝛼𝛼

   has  has 𝛿𝛿 ss,, 𝜖𝜖,, ff(( ))



1. 1.                                            by machine construction;                                           by machine construction;LL NN   ==  L L NN   ∪∪  L L NN(( 𝛾𝛾)) (( 𝛼𝛼)) (( 𝛽𝛽))

2. 2.  and  and                               by inductive hypothesis;                              by inductive hypothesis;LL NN   ==  L L 𝛼𝛼(( 𝛼𝛼)) (( )) LL NN   ==  L L 𝛽𝛽(( 𝛽𝛽)) (( ))

3. 3. Thus Thus     by definition of     by definition of ..LL NN   ==  L L 𝛼𝛼   ∪∪  L L 𝛽𝛽   ==  L L 𝛼𝛼++ 𝛽𝛽   ==  L L 𝛾𝛾(( 𝛾𝛾)) (( )) (( )) (( )) (( )) 𝛾𝛾

  
[I will continue as time permits by copy-and-paste and moving things around to do the other two inductive cases to[I will continue as time permits by copy-and-paste and moving things around to do the other two inductive cases to  
complete the proof.  But first, are you completely happy with complete the proof.  But first, are you completely happy with  as it stands?] as it stands?]NN𝛾𝛾

[Answer was [Answer was nono: adding the state : adding the state  and  and -arcs shown in red "preserves the invariant" of the-arcs shown in red "preserves the invariant" of theff𝛾𝛾 𝜖𝜖

NFAs all having a single accepting state.]NFAs all having a single accepting state.]
  

  
The proof will be finished with the star case (I3) on Wednesday.The proof will be finished with the star case (I3) on Wednesday.

  

  

Construction for (I1):Construction for (I1):

NN   ==   𝛾𝛾
ss𝛾𝛾

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼

ss𝛽𝛽 ff𝛽𝛽NN𝛽𝛽

𝜖𝜖

𝜖𝜖

This builds This builds , but we still need to prove it is correct, i.e., , but we still need to prove it is correct, i.e., . . Note the rhythm:Note the rhythm:NN𝛾𝛾 LL NN   ==  L L 𝛾𝛾   (( 𝛾𝛾)) (( ))

note rule: note rule:   𝜖𝜖 ·· x x ==  x x

for all strings for all strings ..xx

ff𝛾𝛾

𝜖𝜖

𝜖𝜖

(I2) (I2)  is a regexp;  is a regexp; 𝛾𝛾  ==  𝛼  𝛼 ⋅⋅  𝛽 𝛽 LL 𝛾𝛾   ==  A  A ⋅⋅  B  B ==   xyxy ::  x  x ∈∈ A A ∧∧  y  y ∈∈  B B ..(( )) {{ }}

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼
ss𝛽𝛽 ff𝛽𝛽NN𝛽𝛽𝜖𝜖

Then Then  because....processing.... because....processing....LL NN   ==  L L NN   ⋅⋅  L L NN(( 𝛾𝛾)) (( 𝛼𝛼)) (( 𝛽𝛽))

To write the reasoning out: To write the reasoning out:  can process a string  can process a string  from its start state  from its start state  to its (unique) to its (unique)NN𝛾𝛾 zz ss   ==  s s𝛾𝛾 𝛼𝛼

final state final state  if and only if  if and only if  has a first part  has a first part  that gets processed from  that gets processed from  to  to  and a and aff   ==  f f𝛾𝛾 𝛽𝛽 zz xx ss𝛼𝛼 ff𝛼𝛼
second part second part  that gets processed from  that gets processed from  to  to  (with the  (with the  from  from  to  to  silently in-between).  I.e.: silently in-between).  I.e.:yy ss𝛽𝛽 ff𝛽𝛽 𝜖𝜖 ff𝛼𝛼 ss𝛽𝛽

  Thus  Thusz z ∈∈  L L NN   ⟺⟺ z z ∈∈   xx ⋅⋅ yy ::  x  x ∈∈  L L NN   ∧∧  y  y ∈∈  L L NN   ⟺⟺  z  z ∈∈  L L NN ⋅⋅ LL NN ..(( 𝛾𝛾)) {{ (( 𝛼𝛼)) (( 𝛽𝛽))}} (( 𝛼𝛼)) (( 𝛽𝛽))

.  By .  By IHIH, this equals , this equals , which by how the semantics of , which by how the semantics of LL NN   == LL NN ⋅⋅ LL NN   (( 𝛾𝛾)) (( 𝛼𝛼)) (( 𝛽𝛽)) LL 𝛼𝛼 ⋅⋅ LL 𝛽𝛽(( )) (( )) 𝛾 𝛾 ==

 is defined via  is defined via finally gives us the needed conclusion finally gives us the needed conclusion   𝛼𝛼 ⋅⋅ 𝛽𝛽 LL 𝛾𝛾   ==  L L 𝛼𝛼 ⋅⋅ LL 𝛽𝛽   (( )) (( )) (( )) LL NN   ==  L L 𝛾𝛾 ..(( 𝛾𝛾)) (( ))

::NN𝛾𝛾


