CSE491/596 Lecture Monday Sept. 7, 2020

The formal definition of a *finite automaton* is a 5-tuple (i.e., an object) $N = (O, \Sigma, \delta, s, F)$ where:

- Q is a finite set of *states*
- Σ is the *input alphabe*t
- s, a member of Q, is the start state (also called q_0)
- *F*, a subset of *Q*, is the set of *accepting* states (also called *final* states) set<State> F;
- δ is a finite set of *instructions* (also called *transitions*) of the form (p, c, q) where $p, q \in Q$ and $c \in \Sigma$; an NFA with ϵ -transitions (NFA_{ϵ}) also allows (p, ϵ, q) . set<Triple<State, char, State> > delta;

The machine is *deterministic* (a DFA) if $(\forall p \in Q)(\forall c \in \Sigma)(\exists ! q \in Q) : (p, c, q) \in \delta$. Else it is "properly" nondeterministic (an NFA).

So DFA is a special case of an NFA. When we have a DFA M, we can regard δ as a function from $Q \times \Sigma$ to Q. With an NFA, we could regard δ as a function from $Q \times \Sigma$ to 2^Q , which is the set of all subsets of Q and called the *power set* of Q. But in most cases I prefer to think of δ as a set of instructions---the same as "trominoes" in my previous lecture.

Say that N can process a string x from state p to state q if there is a sequence of instructions

$$(p, c_1, q_1)(q_1, c_2, q_2)(q_2, c_3, q_3) \cdots (q_{m-2}, c_{m-1}, q_{m-1})(q_{m-1}, c_m, q)$$

such that $c_1c_2 \cdots c_m = x$. Then we write $x \in L_{pq}$ (with N understood). Now formally define:

$$(N) = \bigcup_{f \in F} L_{sf}$$

If N has only one accepting state (a design goal we can meet for NFAs but often not for DFAs) then the language is just L_{sf} . We will find the L_{pq} concept especially handy with "GNFAs" on Fri.

- set<State> Q;
- set<char> Sigma;

State s;

Regular Expressions and Their Corresponding NFAs (with ϵ **-transitions):**

This completes the *basis* of an *inductive definition* of regular expressions. Now let α and β be any two regular expressions, with languages $A = L(\alpha)$ and $B = L(\beta)$. By *inductive hypothesis* (IH) we have NFAs N_{α} and N_{β} such that $L(N_{\alpha}) = A$ and $L(N_{\beta}) = B$. Then:

(11) $\gamma = \alpha + \beta$ is a regexp; $L(\gamma) = A \cup B$.

Now to complete the *induction case* (I1) we need to show how to build an NFA_{ε} N_{γ} such that $L(N_{\gamma}) = L(\gamma)$. What we have to work with is (are) N_{α} and N_{β} . We know they have start states we can call s_{α} and s_{β} . Taking a cue from the base case NFAs, and mainly for convenience, we may suppose they have unique accepting states f_{α} and f_{β} . Besides that, we make no assumptions about their internal structure, so we draw them as "blobs":

The goal is to connect them together to make N_{γ} with needed properties, also for the cases: (I2) $\gamma = \alpha \cdot \beta$ is a regexp; $L(\gamma) = A \cdot B$. (I3) $\gamma = \alpha^*$ is a regexp; $L(\gamma) = A^*$. (In I3 we have only N_{α} given.)

1. $L(N_{\gamma}) = L(N_{\alpha}) \odot L(N_{\beta})$ 2. $L(N_{\alpha}) = L(\alpha)$ and $L(N_{\beta}) = L(\beta)$ by inductive hypothesis; 3. Thus $L(N_{\gamma}) = L(\alpha) \cup L(\beta) = L(\alpha + \beta) = L(\gamma)$ by definition of γ .

[I will continue as time permits by copy-and-paste and moving things around to do the other two inductive cases to complete the proof. But first, are you completely happy with N_{γ} as it stands?] [Answer was *no*: adding the state f_{γ} and ϵ -arcs shown in red "preserves the invariant" of the NFAs all having a single accepting state.]

To write the reasoning out: N_{γ} can process a string z from its start state $s_{\gamma} = s_{\alpha}$ to its (unique) final state $f_{\gamma} = f_{\beta}$ if and only if z has a first part x that gets processed from s_{α} to f_{α} and a second part y that gets processed from s_{β} to f_{β} (with the ϵ from f_{α} to s_{β} silently in-between). I.e.: $z \in L(N_{\gamma}) \iff z \in \{x \cdot y : x \in L(N_{\alpha}) \land y \in L(N_{\beta})\} \iff z \in L(N_{\alpha}) \cdot L(N_{\beta})$. Thus $L(N_{\gamma}) = L(N_{\alpha}) \cdot L(N_{\beta})$. By IH, this equals $L(\alpha) \cdot L(\beta)$, which by how the semantics of $\gamma = \alpha \cdot \beta$ is defined via $L(\gamma) = L(\alpha) \cdot L(\beta)$ finally gives us the needed conclusion $L(N_{\gamma}) = L(\gamma)$.

The proof will be finished with the star case (I3) on Wednesday.