
CSE491/596 Lecture Monday Sept. 7, 2020CSE491/596 Lecture Monday Sept. 7, 2020

The formal definition of a The formal definition of a finite automatonfinite automaton is a 5-tuple (i.e., an object) is a 5-tuple (i.e., an object) where: where:N N == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(())

• • is a finite set of is a finite set of states states set<State> Qset<State> Q;;QQ

• • is the is the input alphabeinput alphabet t set<char> Sigmaset<char> Sigma;;𝛴𝛴

• • , a member of , a member of , is the , is the start statestart state (also called (also called)) State sState s;;ss QQ qq00

• • , a subset of , a subset of , is the set of , is the set of accepting accepting states (also called states (also called finalfinal states) states) set<State> Fset<State> F;;FF QQ

• • is a finite set of is a finite set of instructions instructions (also called (also called transitionstransitions) of the form) of the form where where and and ; an; an 𝛿𝛿 pp,, cc,, qq(()) pp,, q q ∈∈ Q Q c c ∈∈ 𝛴 𝛴

NFA with NFA with -transitions (NFA-transitions (NFA) also allows) also allows set<Triple<State,char,State> > deltaset<Triple<State,char,State> > delta;;𝜖𝜖
𝜖𝜖

pp,, 𝜖𝜖,, qq ..(())

The machine is The machine is deterministicdeterministic (a DFA) if (a DFA) if . Else it is "properly". Else it is "properly" ∀∀pp ∈∈ Q Q ∀∀ c c ∈∈(())((𝛴𝛴)) ∃∃!q !q ∈∈ Q Q :: pp,, cc,, qq ∈∈ 𝛿 𝛿(()) (())

nondeterministicnondeterministic (an NFA). (an NFA).

So DFA is a special case of an NFA. When we have a DFA So DFA is a special case of an NFA. When we have a DFA , we can regard , we can regard as a function from as a function from to to .. MM 𝛿𝛿 Q Q ×× 𝛴 𝛴 QQ

With an NFA, we could regard With an NFA, we could regard as a function from as a function from to to , which is the set of all subsets of , which is the set of all subsets of and called and called 𝛿𝛿 Q Q ×× 𝛴 𝛴 22QQ QQ

the the power setpower set of of . But in most cases I prefer to think of . But in most cases I prefer to think of as a set of instructions---the same as "trominoes" in my as a set of instructions---the same as "trominoes" in my QQ 𝛿𝛿

previous lecture.previous lecture.

Say that Say that can processcan process a string a string fromfrom state state toto state state if there is a sequence of instructions if there is a sequence of instructionsNN xx pp qq

,, pp,, cc ,, qq qq ,, cc ,, qq qq ,, cc ,, qq ⋯⋯ qq ,, cc ,, qq qq((11 11))((11 22 22))((22 33 33)) ((m-2m-2 m-1m-1 m-1m-1))((m-1m-1 cc ,, qqmm))

such that such that . Then we write . Then we write (with (with understood). Now formally define: understood). Now formally define:cc cc ⋯⋯ cc == x x11 22 mm x x ∈∈ L Lpqpq NN

..LL NN == ∪∪ L L(()) f ∈Ff ∈F sfsf

If If has only one accepting state (a design goal we can meet for NFAs but often not for DFAs) then the language has only one accepting state (a design goal we can meet for NFAs but often not for DFAs) then the language NN

is just is just . We will find the . We will find the concept especially handy with "GNFAs" on Fri. concept especially handy with "GNFAs" on Fri.LLsfsf LLpqpq

ss ff

$$

$$
DD

x x == $DD $DD

DD

deaddead

 but but is not accepting is not acceptingx x ∈∈ L Ls,deads,dead deaddead

so so is not in the language. is not in the language.xx

Without the dead state and arc to it, the NFA Without the dead state and arc to it, the NFA on input on input would "crash" in state would "crash" in state N N x x == $DD $DD ss..

Even though Even though is an accepting state (and even though this would count as legal termination by is an accepting state (and even though this would count as legal termination byss

a Turing machine), not all of a Turing machine), not all of would be processed, so it does not count in the FA's language. would be processed, so it does not count in the FA's language. xx

With the dead state present, With the dead state present, gets processed to gets processed to , but , but so so still. still.xx deaddead dead dead ∉∉ F F x x ∉∉ L L NN(())

NN ::

Regular Expressions and Their Corresponding NFAs (with Regular Expressions and Their Corresponding NFAs (with -transitions):-transitions):𝜖𝜖

(B1) (B1) is a regexp; is a regexp; ∅∅ LL ∅∅ == ∅ ∅;; N N == (()) ∅∅
ss ff 𝛿 𝛿 == ∅ ∅(())

(B2) (B2) is a regexp; is a regexp; 𝜖𝜖 LL 𝜖𝜖 == 𝜖𝜖 ;; N N == (()) {{ }} 𝜖𝜖 ss ff
𝜖𝜖

For all chars For all chars ::c c ∈∈ 𝛴 𝛴

(B3)(B3) is a regexp; is a regexp; cc LL cc == cc ;; N N == (()) {{ }} cc
ss ff

cc

This completes the This completes the basisbasis of an of an inductive definitioninductive definition of regular expressions. Now let of regular expressions. Now let and and 𝛼𝛼 𝛽𝛽

be any two regular expressions, with languages be any two regular expressions, with languages and and . By . By inductiveinductiveA A == L L 𝛼𝛼(()) B B == L L 𝛽𝛽(())

hypothesishypothesis ((IHIH) we have NFAs) we have NFAs and and such that such that and and . Then:. Then:NN𝛼𝛼 NN𝛽𝛽 LL NN == A A((𝛼𝛼)) LL NN == B B((𝛽𝛽))

Now to complete the Now to complete the induction caseinduction case (I1) we need to show how to build an NFA (I1) we need to show how to build an NFA such such𝜖𝜖 NN𝛾𝛾

that that . What we have to work with is (are) . What we have to work with is (are) and and . We know they have. We know they haveLL NN == L L 𝛾𝛾((𝛾𝛾)) (()) NN𝛼𝛼 NN𝛽𝛽

start states we can call start states we can call and and . Taking a cue from the base case NFAs, and mainly for . Taking a cue from the base case NFAs, and mainly for ss𝛼𝛼 ss𝛽𝛽
convenience, we may suppose they have unique accepting states convenience, we may suppose they have unique accepting states and and . Besides that,. Besides that,ff𝛼𝛼 ff𝛽𝛽
we make no assumptions about their internal structure, so we draw them as "blobs": we make no assumptions about their internal structure, so we draw them as "blobs":

(I1) (I1) is a regexp; is a regexp; 𝛾𝛾 == 𝛼 𝛼 ++ 𝛽 𝛽 LL 𝛾𝛾 == A A ∪∪ B B..(())

ss𝛼𝛼 ff𝛼𝛼 ss𝛽𝛽 ff𝛽𝛽NN𝛼𝛼 NN𝛽𝛽

The goal is to connect them together to make The goal is to connect them together to make with needed properties, also for the cases: with needed properties, also for the cases:NN𝛾𝛾

(I2) (I2) is a regexp; is a regexp; 𝛾𝛾 == 𝛼 𝛼 ⋅⋅ 𝛽 𝛽 LL 𝛾𝛾 == A A ⋅⋅ B B..(())

(I3) (I3) is a regexp; is a regexp; 𝛾𝛾 == 𝛼 𝛼** LL 𝛾𝛾 == A A ..(()) ** (In I3 we have only (In I3 we have only given.) given.)NN𝛼𝛼

 has has 𝛿𝛿 ss,, 𝜖𝜖,, ff(())

1. 1. by machine construction; by machine construction;LL NN == L L NN ∪∪ L L NN((𝛾𝛾)) ((𝛼𝛼)) ((𝛽𝛽))

2. 2. and and by inductive hypothesis; by inductive hypothesis;LL NN == L L 𝛼𝛼((𝛼𝛼)) (()) LL NN == L L 𝛽𝛽((𝛽𝛽)) (())

3. 3. Thus Thus by definition of by definition of ..LL NN == L L 𝛼𝛼 ∪∪ L L 𝛽𝛽 == L L 𝛼𝛼++ 𝛽𝛽 == L L 𝛾𝛾((𝛾𝛾)) (()) (()) (()) (()) 𝛾𝛾

[I will continue as time permits by copy-and-paste and moving things around to do the other two inductive cases to[I will continue as time permits by copy-and-paste and moving things around to do the other two inductive cases to
complete the proof. But first, are you completely happy with complete the proof. But first, are you completely happy with as it stands?] as it stands?]NN𝛾𝛾

[Answer was [Answer was nono: adding the state : adding the state and and -arcs shown in red "preserves the invariant" of the-arcs shown in red "preserves the invariant" of theff𝛾𝛾 𝜖𝜖

NFAs all having a single accepting state.]NFAs all having a single accepting state.]

The proof will be finished with the star case (I3) on Wednesday.The proof will be finished with the star case (I3) on Wednesday.

Construction for (I1):Construction for (I1):

NN == 𝛾𝛾
ss𝛾𝛾

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼

ss𝛽𝛽 ff𝛽𝛽NN𝛽𝛽

𝜖𝜖

𝜖𝜖

This builds This builds , but we still need to prove it is correct, i.e., , but we still need to prove it is correct, i.e., . . Note the rhythm:Note the rhythm:NN𝛾𝛾 LL NN == L L 𝛾𝛾 ((𝛾𝛾)) (())

note rule: note rule: 𝜖𝜖 ·· x x == x x

for all strings for all strings ..xx

ff𝛾𝛾

𝜖𝜖

𝜖𝜖

(I2) (I2) is a regexp; is a regexp; 𝛾𝛾 == 𝛼 𝛼 ⋅⋅ 𝛽 𝛽 LL 𝛾𝛾 == A A ⋅⋅ B B == xyxy :: x x ∈∈ A A ∧∧ y y ∈∈ B B ..(()) {{ }}

ss𝛼𝛼 ff𝛼𝛼NN𝛼𝛼
ss𝛽𝛽 ff𝛽𝛽NN𝛽𝛽𝜖𝜖

Then Then because....processing.... because....processing....LL NN == L L NN ⋅⋅ L L NN((𝛾𝛾)) ((𝛼𝛼)) ((𝛽𝛽))

To write the reasoning out: To write the reasoning out: can process a string can process a string from its start state from its start state to its (unique) to its (unique)NN𝛾𝛾 zz ss == s s𝛾𝛾 𝛼𝛼

final state final state if and only if if and only if has a first part has a first part that gets processed from that gets processed from to to and a and aff == f f𝛾𝛾 𝛽𝛽 zz xx ss𝛼𝛼 ff𝛼𝛼
second part second part that gets processed from that gets processed from to to (with the (with the from from to to silently in-between). I.e.: silently in-between). I.e.:yy ss𝛽𝛽 ff𝛽𝛽 𝜖𝜖 ff𝛼𝛼 ss𝛽𝛽

 Thus Thusz z ∈∈ L L NN ⟺⟺ z z ∈∈ xx ⋅⋅ yy :: x x ∈∈ L L NN ∧∧ y y ∈∈ L L NN ⟺⟺ z z ∈∈ L L NN ⋅⋅ LL NN ..((𝛾𝛾)) {{ ((𝛼𝛼)) ((𝛽𝛽))}} ((𝛼𝛼)) ((𝛽𝛽))

. By . By IHIH, this equals , this equals , which by how the semantics of , which by how the semantics of LL NN == LL NN ⋅⋅ LL NN ((𝛾𝛾)) ((𝛼𝛼)) ((𝛽𝛽)) LL 𝛼𝛼 ⋅⋅ LL 𝛽𝛽(()) (()) 𝛾 𝛾 ==

 is defined via is defined via finally gives us the needed conclusion finally gives us the needed conclusion 𝛼𝛼 ⋅⋅ 𝛽𝛽 LL 𝛾𝛾 == L L 𝛼𝛼 ⋅⋅ LL 𝛽𝛽 (()) (()) (()) LL NN == L L 𝛾𝛾 ..((𝛾𝛾)) (())

::NN𝛾𝛾

