
CSE491/596: Lecture Fri. 9/8/23
 
One HW problem will be: Consider the "spears and dragons" DFA from the demo, which had alphabet 

 where '0' means an empty room.  Build deterministic finite automata that model the 𝛴 = , D, 0{ }

following alterations to the game:
• (a) You may hold up to 2 spears, but not 3.  If you have 2 spears and kill a dragon, you are down 

to one spear.
• (b) You may hold up to 2 spears, but may only hold 2 spears for a limited time.  If you get two 

empty rooms after picking up the second spear, you have to drop down to carrying one spear.
In each case, the language of your machine should be the set of strings  that represent x ∈ 𝛴*

"dungeons" where the Player survives.  It is fine for the Player to exit holding zero spears, one spear, or 
two spears.
 
Regular Expressions and Their Corresponding NFAs (with -transitions):𝜖

 
We give an inductive definition with three base cases B1,B2,B3 and three inductive cases I1,I2,I3. At 
the same time, we give an inductive procedure for building an equivalent NFA with -transitions.𝜖

 

 

(B1)  is a regexp; ∅ L ∅  =  ∅;       N  =  ( ) ∅
s f 𝛿 =  ∅( )

(B2)  is a regexp; 𝜖 L 𝜖  =  𝜖 ;       N  =  ( ) { } 𝜖 s f
𝜖

For all chars :c ∈  𝛴

(B3)  is a regexp; c L c  =  c ;       N  =  ( ) { }
c

s f
c

This completes the basis of an inductive definition of regular expressions. Now let  and  𝛼 𝛽

be any two regular expressions, with languages  and .  By inductiveA =  L 𝛼( ) B =  L 𝛽( )

hypothesis (IH) we have NFAs  and  such that  and .  Then:N𝛼 N𝛽 L N  =  A( 𝛼) L N  =  B( 𝛽)

Now to complete the induction case (I1) we need to show how to build an NFA   such𝜖 N𝛾

that .  What we have to work with is (are)  and .  We know they haveL N  =  L 𝛾( 𝛾) ( ) N𝛼 N𝛽

start states we can call  and .  Taking a cue from the base case NFAs, and mainly for s𝛼 s𝛽
convenience, we may suppose they have unique accepting states  and . Besides that,f𝛼 f𝛽

we make no assumptions about their internal structure, so we draw them as "blobs": 

(I1)  is a regexp; 𝛾 =  𝛼 +  𝛽 L 𝛾  =  L 𝛼  ∪  L 𝛽 .( ) ( ) ( )

s𝛼 f𝛼 s𝛽 f𝛽N𝛼 N𝛽

  has 𝛿 s, 𝜖, f( )

 has 𝛿 s, c, f( )



1.                                            by machine construction;L N  =  L N  ∪  L N( 𝛾) ( 𝛼) ( 𝛽)

2.  and                               by inductive hypothesis;L N  =  L 𝛼( 𝛼) ( ) L N  =  L 𝛽( 𝛽) ( )

3. Thus     by definition of .L N  =  L 𝛼  ∪  L 𝛽  =  L 𝛼 + 𝛽  =  L 𝛾( 𝛾) ( ) ( ) ( ) ( ) 𝛾

 

 
Now we finish the proof with the Kleene Star case---named for Stephen Kleene:

 

 

The goal is to connect them together to make  with needed properties, also for the cases:N𝛾

(I2)  is a regexp; 𝛾 =  𝛼 ⋅  𝛽 L 𝛾  =  A ⋅  B.( )

(I3)  is a regexp; 𝛾 =  𝛼* L 𝛾  =  A .( ) * (In I3 we have only  given.)N𝛼

Construction for (I1):

N  =  𝛾 s𝛾

s𝛼 f𝛼N𝛼

s𝛽 f𝛽N𝛽

𝜖

𝜖

This builds , but we still need to prove it is correct, i.e., . Note the rhythm:N𝛾 L N  =  L 𝛾  ( 𝛾) ( )

note rule:  𝜖 · x =  x

for all strings .x

f𝛾

𝜖

𝜖

(I1)  is a regexp; 𝛾 =  𝛼 +  𝛽 L 𝛾  =  L 𝛼  ∪  L 𝛽 .( ) ( ) ( )

(I2)  is a regexp; 𝛾 =  𝛼 ⋅  𝛽 L 𝛾  =  A ⋅  B =  xy :  x ∈ A ∧  y ∈  B .( ) { }

s𝛼 f𝛼N𝛼
s𝛽 f𝛽N𝛽𝜖

Then  because....processing....L N  =  L N  ⋅  L N( 𝛾) ( 𝛼) ( 𝛽)

To write the reasoning out:  can process a string  from its start state  to its (unique)N𝛾 z s  =  s𝛾 𝛼

final state  if and only if  has a first part  that gets processed from  to  and af  =  f𝛾 𝛽 z x s𝛼 f𝛼

second part  that gets processed from  to  (with the  from  to  silently in-between).  I.e.:y s𝛽 f𝛽 𝜖 f𝛼 s𝛽
  Thusz ∈  L N  ⟺ z ∈  x ⋅ y :  x ∈  L N  ∧  y ∈  L N  ⟺  z ∈  L N ⋅ L N .( 𝛾) { ( 𝛼) ( 𝛽)} ( 𝛼) ( 𝛽)

.  By IH, this equals , which by how the semantics of L N  = L N ⋅ L N  ( 𝛾) ( 𝛼) ( 𝛽) L 𝛼 ⋅ L 𝛽( ) ( ) 𝛾 =

 is defined via finally gives us the needed conclusion  𝛼 ⋅ 𝛽 L 𝛾  =  L 𝛼 ⋅ L 𝛽  ( ) ( ) ( ) L N  =  L 𝛾 .( 𝛾) ( )

:N𝛾



 
The Main Theorem About Regular Expressions and Finite Automata
Theorem: For any language  over an alphabet , the following statements are equivalent:A 𝛴

1. There is a regular expression  such that .𝛼 A =  L 𝛼( )

2. There is an NFA  such that .N A =  L N( )

3. There is a DFA  such that .M A =  L M( )

 
Example: The "Leap of Faith" NFAs  for any :Nk k >  1

 

 

s𝛼 f𝛼N𝛼

(I3) Given any regexp ,   is a regexp; ; and we can build:𝛼 𝛾 =  𝛼* L 𝛾  =  L 𝛼( ) ( )*

s𝛾 f𝛾

𝜖

𝜖𝜖

N  =𝛾

Is this good?  We want to make .  Then the IH L N  =  L N( 𝛾) ( 𝛼)* L N  =  L 𝛼( 𝛼) ( )

will give  as needed---to finish the whole proof.L N = L 𝛼 = L 𝛼 = L 𝛾( 𝛾) ( )* * ( )

This is a Feedback Circuit

𝜖

with bypass.

. . .

0, 1

1

0 0 0

1 1 1

k - 1 arcs

L N  =  0 + 1 1 0 + 1( k) ( )* ( )k-1

.=  x ∈  0, 1 :  the kth bit of x from the end is a 1{ }*

Fact (will be proved later): Whereas the NFA  has only  states,Nk k + 1

 the smallest DFA  such that  requires  states.  Mk L M  =  L N( k) ( k) 2k

This is a case of exponential blowup in the NFA-to-DFA algorithm. 
For now, we just care that an equivalent DFA can be built.

q0
q1 q2 qk




