One HW problem will be: Consider the "spears and dragons" DFA from the demo, which had alphabet $\Sigma=\{, D, 0\}$ where ' 0 ' means an empty room. Build deterministic finite automata that model the following alterations to the game:

- (a) You may hold up to 2 spears, but not 3. If you have 2 spears and kill a dragon, you are down to one spear.
- (b) You may hold up to 2 spears, but may only hold 2 spears for a limited time. If you get two empty rooms after picking up the second spear, you have to drop down to carrying one spear.
In each case, the language of your machine should be the set of strings $x \in \Sigma^{*}$ that represent "dungeons" where the Player survives. It is fine for the Player to exit holding zero spears, one spear, or two spears.

Regular Expressions and Their Corresponding NFAs (with ϵ-transitions):

We give an inductive definition with three base cases $\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3$ and three inductive cases $\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3$. At the same time, we give an inductive procedure for building an equivalent NFA with ϵ-transitions.
(B1) \varnothing is a regexp; $L(\varnothing)=\varnothing ; \quad N_{\varnothing}=$

(B2) ϵ is a regexp; $L(\epsilon)=\{\epsilon\} ; \quad N_{\epsilon}=$

For all chars $c \in \Sigma$:
δ has (s, ϵ, f)
$(\mathrm{B} 3) \mathrm{c}$ is a regexp; $L(\mathrm{c})=\{c\} ; \quad N_{\mathrm{c}}=$

This completes the basis of an inductive definition of regular expressions. Now let α and β be any two regular expressions, with languages $A=L(\alpha)$ and $B=L(\beta)$. By inductive hypothesis (IH) we have NFAs N_{α} and N_{β} such that $L\left(N_{\alpha}\right)=A$ and $L\left(N_{\beta}\right)=B$. Then:
(I1) $\gamma=\alpha+\beta$ is a regexp; $L(\gamma)=L(\alpha) \cup L(\beta)$.
Now to complete the induction case (11) we need to show how to build an NFA ${ }_{\epsilon} N_{\gamma}$ such that $L\left(N_{\gamma}\right)=L(\gamma)$. What we have to work with is (are) N_{α} and N_{β}. We know they have start states we can call s_{α} and s_{β}. Taking a cue from the base case NFAs, and mainly for convenience, we may suppose they have unique accepting states f_{α} and f_{β}. Besides that, we make no assumptions about their internal structure, so we draw them as "blobs":

The goal is to connect them together to make N_{γ} with needed properties, also for the cases: (I2) $\gamma=\alpha \cdot \beta$ is a regexp; $L(\gamma)=A \cdot B$.
(I3) $\gamma=\alpha^{*}$ is a regexp; $L(\gamma)=A^{*}$.
(In I3 we have only N_{α} given.)
(11) $\gamma=\alpha+\beta$ is a regexp; $L(\gamma)=L(\alpha) \cup L(\beta)$.

This builds N_{γ}, but we still need to prove it is correct, i.e., $L\left(N_{\gamma}\right)=L(\gamma)$. Note the rhythm:

1. $L\left(N_{\gamma}\right)=L\left(N_{\alpha}\right) \cup L\left(N_{\beta}\right)$
2. $L\left(N_{\alpha}\right)=L(\alpha)$ and $L\left(N_{\beta}\right)=L(\beta) \quad$ by inductive hypothesis;
3. Thus $L\left(N_{\gamma}\right)=L(\alpha) \cup L(\beta)=L(\alpha+\beta)=L(\gamma)$ by definition of γ.
(I2) $\gamma=\alpha \cdot \beta$ is a regexp; $L(\gamma)=A \cdot B=\{x y: x \in A \wedge y \in B\}$.

$$
\text { Then } L\left(N_{\gamma}\right)=L\left(N_{\alpha}\right) \cdot L\left(N_{\beta}\right) \text { because....processing.... }
$$

To write the reasoning out: N_{γ} can process a string z from its start state $s_{\gamma}=s_{\alpha}$ to its (unique) final state $f_{\gamma}=f_{\beta}$ if and only if z has a first part x that gets processed from s_{α} to f_{α} and a second part y that gets processed from s_{β} to f_{β} (with the ϵ from f_{α} to s_{β} silently in-between). I.e.: $z \in L\left(N_{\gamma}\right) \Longleftrightarrow z \in\left\{x \cdot y: x \in L\left(N_{\alpha}\right) \wedge y \in L\left(N_{\beta}\right)\right\} \Longleftrightarrow z \in L\left(N_{\alpha}\right) \cdot L\left(N_{\beta}\right)$. Thus $L\left(N_{\gamma}\right)=L\left(N_{\alpha}\right) \cdot L\left(N_{\beta}\right)$. By IH, this equals $L(\alpha) \cdot L(\beta)$, which by how the semantics of $\gamma=$ $\alpha \cdot \beta$ is defined via $L(\gamma)=L(\alpha) \cdot L(\beta)$ finally gives us the needed conclusion $L\left(N_{\gamma}\right)=L(\gamma)$.

Now we finish the proof with the Kleene Star case---named for Stephen Kleene:
(I3) Given any regexp $\alpha, \gamma=\alpha^{*}$ is a regexp; $L(\gamma)=L(\alpha)^{*}$; and we can build:

Is this good? We want to make $L\left(N_{\gamma}\right)=L\left(N_{\alpha}\right)^{*}$. Then the IH $L\left(N_{\alpha}\right)=L(\alpha)$ will give $L\left(N_{\gamma}\right)=L(\alpha)^{*}=L\left(\alpha^{*}\right)=L(\gamma)$ as needed---to finish the whole proof.

The Main Theorem About Regular Expressions and Finite Automata

Theorem: For any language A over an alphabet Σ, the following statements are equivalent:

1. There is a regular expression α such that $A=L(\alpha)$.
2. There is an NFA N such that $A=L(N)$.
3. There is a DFA M such that $A=L(M)$.

Example: The "Leap of Faith" NFAs N_{k} for any $k>1$:

Fact (will be proved later): Whereas the NFA N_{k} has only $k+1$ states, the smallest DFA M_{k} such that $L\left(M_{k}\right)=L\left(N_{k}\right)$ requires 2^{k} states. This is a case of exponential blowup in the NFA-to-DFA algorithm.
For now, we just care that an equivalent DFA can be built.

