
CSE491/596 Lecture Wed. Sep. 9. Kleene Star and NFA-to-DFA.

L 𝛾 = A ⋅ B = xy : x ∈ A ∧ y ∈ B .() { }

Given (meaning: is a language), define as shorthand for . A ⊆ 𝛴* A A2 A ⋅A

Does ? Where for any string . E.g. if thenA = x : x ∈ A2 2 x = x ⋅ x2 x A = 0, 01, 10{ }

. But x : x ∈ A = 00, 0101, 10102 { } A = 00, 001, 010, 0101, 0110, 100, 1001, 1010 .2 { }

I.e., , allowing different from . Note also not .A = A ⋅A = x ⋅ y : x, y ∈ A2 { } y x |A | = 82 9

Also abbreviates , , etc. Also just equals . But what about ?A3 A ⋅A ⋅A A = A ⋅A4 3 A1 A A0

We want languages to obey the same law of powers that numbers do: . The special case a ⋅ a = ai j i+j i = 0

needs for all , so must equal . Well, the analogue of for languages is , which gives a ⋅ a = a = a0 j 0+j j j a0 1 1 𝜖{ }

 for all languages . So we want . 𝜖 ⋅B = B ⋅ 𝜖 = B{ } { } B A = 𝜖0 { }

The tricky thing is that this goes even for : , not ! Why should this be?A = ∅ ∅ = 𝜖0 { } ∅

I wrote one story about it at https://rjlipton.wordpress.com/2015/02/23/the-right-stuff-of-emptiness/
In abstract math, denotes the set of functions , and by rule, which is just a power of BA f : A B→ |B | = |B|A |A|

numbers. So equals the cardinality of the set of functions from to . Now:00
∅ ∅

The empty function is a function from to .∅ ∅ ∅

And it is the only function from to This is "Zen" but real. So . Since is like , this can be argued ∅ ∅. 0 = 10 𝜖{ } 1

to justify . But I will try a third way to make it intuitive. First, let's finally get around to defining the ∅ = 𝜖0 { }

(Kleene) star operation, named for Stephen Kleene (1909--1994):

A = A = 𝜖 ∪A ∪A ∪ A ∪ ⋯ * ⋃

i=0

∞
i { } 2 3

It is the set of all strings formed by concatenating zero or more strings from . Now here is the intuition for why A

"concatenating zero strings from " yields , i.e., why always includes even when . A 𝜖 A* 𝜖 A = ∅

Suppose we've designed a security system for a building that periodically runs a status check, say if it detects the
possibility of there being an intruder or some other breakdown. The system gets feedback for the check from
various cameras and sensors and monitors. Let be the language of strings representing internal audits of A
sensory data that pass the status check. Since the check can run multiple times, we can picture it being inside an
event-driven while loop. Then is the language of inputs that will pass every check, no matter how many times A*

the check is activated. So, finally, what happens if:

• , meaning we are sure to fail the check if it is activated; butA = ∅

• the check is never activated---the while loop runs 0 times and falls through!

The upshot is that the system passes, with the empty string of sensor data. Because it is a pass, not a fail, the
language of inputs that pass "every" check (of 0 checks) is , not . So .𝜖{ } ∅ ∅ = 𝜖0 { }

Now back to our recursive construction of regular expressions and NFAs corresponding to them. This proves one
part of a theorem discovered by Kleene in the 1950s.

Theorem: For any language over an alphabet , the following statements are equivalent:A 𝛴

1. There is a regular expression such that .𝛼 A = L 𝛼()

2. There is an NFA such that .N A = L N()

3. There is a DFA such that .M A = L M()

We are in the middle of proving 1 2. Next will be 2 3. Then 3 1 would "complete the cycle of ⟹ ⟹ ⟹

equivalence" but in fact we will use something more general than an NFA to go to 1.

s𝛼 f𝛼N𝛼

(I3) Given any regexp , is a regexp; ; and we can build:𝛼 𝛾 = 𝛼* L 𝛾 = L 𝛼() ()*

s𝛾 f𝛾

𝜖

𝜖𝜖

N =𝛾

Is this good? We want to make . Then the IH L N = L N(𝛾) (𝛼)* L N = L 𝛼(𝛼) ()

will give as needed---to finish the whole proof.L N = L 𝛼 = L 𝛼 = L 𝛾(𝛾) ()* * ()

This is a Feedback Circuit

𝜖𝜖

with bypass.

From NFA to DFA
Theorem (part two of Kleene's Theorem): Given any NFA we can build a DFA N = Q,𝛴, 𝛿, s, F()

 such that .M = Q,𝛴,𝛥, S,F() L M = L N() ()

Notice that got capitalized to , which hints that is a set rather than a single element. And got capitalized to

.
s S S 𝛿

𝛥

 and were already sets, but they got...curlier. What does that mean? Well, that they are "of an even higher Q F
order"---sets of sets, for instance. An important set of sets is:

 also written , called the power set of and defined as .P Q ,() 2Q Q R : R ⊆ Q{ }

Unlike what textbooks tend to say, we will not necessarily make be all of , just those subsets that are Q P Q() R

reachable from . What this means is that the states of the DFA will be sets of states of the NFA---the states that S

are possible upon processing a given part of the input string .x

This suggests the question, which states (of) are possible before we process any chars in ? Obviously the start N x

state of is possible, but are there any others? Yes, if there are -transitions out of . Define to be the set s N 𝜖 s E s()

of states of that are reachable this way. If has no -arcs (out of or overall), then is just . Thus we N N 𝜖 s E s() s{ }

begin building by taking . We could have said " " in place of " " to begin with, but the notation is M S = E s() S E s()

useful to define

E R = r : for some q ∈ R, N can process 𝜖 from q to r() { }

for any subset of states. This is called the epsilon-closure of . If then is already epsilon-closed. R R E R = R() R

It sounds "weeny" technical, but we will only need to use subsets that are -closed. The insight is that the states of 𝜖

the DFA are the possible subsets of states of the NFA.

To make the DFA equivalent to the NFA, at least in terms of the language it accepts, we need to build on the
correspondence we started with and . Let be some input of length . For the s S x ∈ 𝛴* n i = 0, 1, … , n - 1, n

design goal for is to arrange that:G i() M

 upon reading is in the state .M x x ⋯ x1 2 i R = r : N can process x x ⋯ x from s to ri { 1 2 i }

Now when , the initial portion is (more "Zen" reasoning), so turns out to be just another i = 0 x x ⋯ x1 2 i 𝜖 R0

name for . By setting , what we've done is achieve the property . We can now use this as the E s() S = E s() G 0()

basis for an induction which we build to achieve. This will give us the final property , G i - 1 ⟹ G i() () 𝛥 G n()

which states:

 upon reading all of is in the state .M x R = r : N can process x from s to rn { }

Now accepts if and only if includes at least one accepting state , i.e., . Thus when we N x Rn f ∈ F R ∩ F ≠ ∅n

regard a possible subset as a state of , we should call it accepting if and only if . Thus the R M R ∩ F ≠ ∅

property will imply , and getting this for all and of length will yield the G n() x ∈ L M ⟺ x ∈ L N() () n x n

conclusion . So thus far we have defined:L M = L N() ()

• Q = possible R ⊆ Q ;{ }

• ;S = E s()

• F = R ∈ Q : R ∩ F ≠ ∅ .{ }

And is the same. The only component of left to define is . For any and define𝛴 M 𝛥 P ∈ Q c ∈ 𝛴

.𝛥 P, c = r : for some p ∈ P, N can process c from p to r() { }

This set is automatically -closed, since so any trailing -arcs can count as part of processing . If we 𝜖 c ⋅ 𝜖 = c* 𝜖 c

assume as our induction hypothesis, take the set which the property refers to, and define G i - 1() Ri-1 G i - 1()

, then we only need to show that has the property required for the conclusion . This is R = 𝛥 R , xi (i-1 i) Ri G i()

that equals the set of states that can process the bits to. The core of the proof is finally to observe Ri N x ⋯ x1 i

that:

 can process if and only if there is a state such that can process N x x ⋯ x x from s to r1 2 i-1 i p N

 from to (which by IH includes into) and such that can process the char x x ⋯ x1 2 i-1 s p G i - 1() p Ri-1 N xi

from to . p r

[Lecture will end by reinforcing how this finishes the proof. Friday will begin by reviewing the proof with a small
change to the definition of that makes it quicker and less error-prone to calculate from , by a process 𝛥 P, c() M N
that examples will view as an instance of breadth-first search.]

