We make a slight change to the heart of the proof where we left off. The change saves some time in executing the NFA-to-DFA construction when ε-arcs are present and reduces errors. First define

$$\delta(p, c) = E(\{(q, (p, c, q) \in \delta)\})$$

for any state $p \in Q$ and char c. Recall $E(\cdot)$ is ε-closure. So what this means in simple terms is:

1. **First** take arc(s) on c out of the state p.
 - If there are none, **stop** and put $\delta(p, c) = \emptyset$.
 - Else collect all states q reached on those arc(s).

2. **Then**, for each state q reached by processing c, add states reached on any series of ε-arcs out of q, if there are any.

Now we can give a new definition of the DFA's transition function Δ: for any $P \subseteq Q$ and $c \in \Sigma$,

$$\Delta(P, c) = \bigcup_{p \in P} \delta(p, c).$$

The difference is that we avoid worrying about initial ε-arcs that could come before processing c. We only have to track trailing ones in a machine diagram. The reason is that the trailing arcs at the previous step already took care of any initial ones now. Initializing the start state S of the DFA M to have all states reached by ε-arcs out of s in N sets this in motion. We need to prove for all i:

$$G(i): \Delta^*(S, x_1 \cdots x_i) = \{r: N \text{ can process } x_1 \cdots x_i \text{ from } s \text{ to } r\}.$$

Here we have extended Δ, a function of a state and a char, to Δ^* which is a function of a state and a string, by the basis $\Delta^*(R, \varepsilon) = R$ for all $R \subseteq Q$ and for $i \geq 1$,

$$\Delta^*(R, x_1 \cdots x_{i-1}x_i) = \Delta(\Delta^*(R, x_1 \cdots x_{i-1}), x_i).$$

So let R_{i-1} stand for $\Delta^*(S, x_1 \cdots x_{i-1})$. Then by the inductive hypothesis $G(i - 1)$, R_{i-1} equals the set of states q such that N can process $x_1 \cdots x_{i-1}$ from s to q. Now put $R_i = \Delta(R_{i-1}, x_i)$.

- Let $r \in R_i$. Then $r \in \delta(q, x_i)$ for some $q \in R_{i-1}$. By IH $G(i - 1)$, N can process $x_1 \cdots x_{i-1}$ from s to q. And N can process x_i from q to r by definition of $r \in \delta(q, x_i)$. So N can process $x_1 \cdots x_i$ from s to r.
- Suppose N can process $x_1 \cdots x_i$ from s to r. Then—-and this is the key point---the processing goes to some state q just before the char x_i is processed. By IH $G(i - 1)$, q belongs to R_{i-1}. Moreover, $r \in \delta(q, x_i)$ because we first do the step that processed the char x_i at q, then any trailing ε-arcs. Thus $r \in \Delta(R_{i-1}, x_i)$, which means $r \in R_i$.

Thus we have established that R_i equals the set of states r such that N can process $x_1 \cdots x_i$ from s to r. This is the statement $G(i)$, which is what we had to prove to make the induction go through. This finally proves the NFA-to-DFA part of Kleene's Theorem. ☒

The extra things pointed out have to do with how the states of the DFA tell what the NFA can and cannot process:

- The NFA cannot process the string bbb from its start state at all. However you try, you come
Now here is a simple algorithm for telling whether a given string \(x \) matches a given regexp \(\alpha \):

1. Convert \(\alpha \) into an equivalent NFA \(N_\alpha \).
2. Convert \(N_\alpha \) into an equivalent DFA \(M_\alpha \).
3. Run \(M_\alpha \) on \(x \). If it accepts, say "yes, it matches", else say "no match".

This algorithm is **correct**, but it is **not efficient**. The reason is that step 2 can blow up. An intuitive
reason for the gross inefficiency is that step 2 makes you create in advance all the "set states" that would ever be used on all possible strings \(x \), but most of them are unnecessary for the particular \(x \) that was given.

There is, however, a better way that builds just the set-states \(R_1, \ldots, R_i, \ldots, R_n \) that are actually encountered in the particular computation on the particular \(x \). We have \(R_0 = S = E(s) \) to begin with. To build each \(R_i \) from the previous \(R_{i-1} \), iterate through every \(q \in R_{i-1} \) and union together all the sets \(\delta(q, x_i) \). If \(N_a \) has \(k \) states---which roughly equals the number of operations in \(\alpha \)---then that takes order \(n \cdot k \cdot k \) steps. This is at worst cubic in the length \(\tilde{O}(n + k) \) of \(x \) and \(\alpha \) together, so this counts as a polynomial-time algorithm. It is in fact the algorithm actually used by the grep command in Linux/UNIX.

Generalized NFAs (GNFAs) --- having only 2 states.

A generalized NFA \(G \) can have any regular expression on any arc. A string \(x \) is "accepted" by \(G \) if it can be broken into \(m \) substrings such that each substring matches the respective regexp in a path of \(m \) arcs of \(G \) that begins at \(s \) and ends in a final state \(f \). A regular NFA in in fact a GNFA in which every arc has a "basic" regular expression---that is, just a char \(c \) in \(\Sigma \), or \(\epsilon \).

I do not regard GNFAs as "machines" that can be "executed"---even in the sense where we could say that the grep algorithm executed the NFA \(N_a \) on \(x \). I regard them as helpful shorthand for diagramming languages. The most illuminating case IMHO of this is for two-state GNFAs:

Diagram:

\[
\begin{align*}
L(G) &= L_{sf} = (\alpha + \beta\gamma^*\eta)^*\beta\gamma^* \\
&= \alpha^*\beta(\gamma + \eta\alpha^*\beta)^*
\end{align*}
\]

\[
\begin{align*}
L(G) &= L_{ss} = (\alpha + \beta\gamma^*\eta)^*.
\end{align*}
\]

\(\eta \) is pronounced "ate-a" in the US, "eat-a" in the UK.