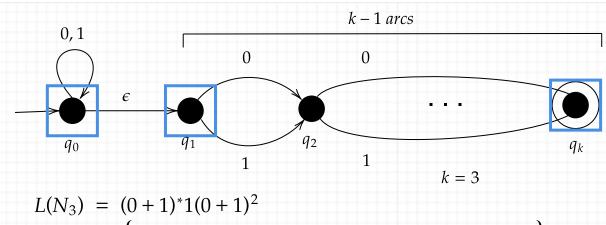
CSE491/596 Lecture Mon. 9/11/23: Converting NFA to DFA

Example (from last time): The "Leap of Faith" NFAs N_k for any k > 1:



 $L(N_3) = (0+1)^*1(0+1)^2$ = $\{x \in \{0,1\}^* : \text{ the 3rd bit of } x \text{ from the end is a 1}\}.$

Fact (will be proved later): Whereas the NFA N_k has only k+1 states, the smallest DFA M_k such that $L(M_k) = L(N_k)$ requires 2^k states. This is a case of **exponential blowup** in the NFA-to-DFA algorithm. For now, we just care that an equivalent DFA **can** be built.

Example String: x=010111000110 Q: What could I change in x to bring about the "macro-state" $\{q_0, q_1, q_2, q_3\}$ (at the end, or anytime)? The starting macro-state is not " q_0 " but rather $\{q_0\}$. The accepting macro-states are the set of those that include q_3 .

Theorem and Abstract Proof

Theorem (part two of Kleene's Theorem): Given any NFA $N=(Q,\Sigma,\delta,s,F)$ we can build a DFA $M=(Q,\Sigma,\Delta,S,\mathcal{F})$ such that L(M)=L(N).

Notice that s got capitalized to S, which hints that S is a *set* rather than a single element. And δ got capitalized to Δ . Q and F were already sets, but they got...curlier. What does that mean? Well, that they are "of an even higher order"---sets of sets, for instance. An important set of sets is:

 $\mathcal{P}(Q)$, also written 2^Q , called the *power set* of Q and defined as $\{R: R \subseteq Q\}$.

Unlike what textbooks tend to say, we will not necessarily make Q be all of $\mathcal{P}(Q)$, just those subsets R that are *reachable* from S. What this means is that the states of the DFA will be sets of states of the NFA---the states that are *possible* upon *processing* a given part of the input string x.

This suggests the question, which states (of N) are possible before we process any chars in x? Obviously the start state s of N is possible, but are there any others? Yes, if there are ϵ -transitions out of s. Define E(s) to be the set of states of N that are reachable this way. If N has no ϵ -arcs (out of s or overall), then E(s) is just $\{s\}$. Thus we begin building M by taking S = E(s). We could have said "S" in place of "E(s)" to begin with, but the notation is useful to define

$$E(R) = \{r : for some q \in R, N can process \in from q to r\}$$

for any subset R of states. This is called the *epsilon-closure* of R. If E(R) = R then R is already *epsilon-closed*. It sounds "weeny" technical, but we will only need to use subsets that are ϵ -closed. The insight is that the states of the DFA are the **possible** subsets of states of the NFA.

```
M upon reading x_1x_2 \cdots x_i is in the state R_i = \{r : N \text{ can process } x_1x_2 \cdots x_i \text{ from } s \text{ to } r\}.
```

Now when i=0, the initial portion $x_1x_2\cdots x_i$ is ϵ (more "Zen" reasoning), so R_0 turns out to be just another name for E(s). By setting S=E(s), what we've done is achieve the property G(0). We can now use this as the basis for an induction $G(i-1)\Longrightarrow G(i)$ which we build Δ to achieve. This will give us the final property G(n), which states:

M upon reading all of x is in the state $R_n = \{r : N \text{ can process } x \text{ from } s \text{ to } r\}.$

Now N accepts x if and only if R_n includes at least one accepting state $f \in F$, i.e., $R_n \cap F \neq \emptyset$. Thus when we regard a possible subset R as a state of M, we should call it accepting if and only if $R \cap F \neq \emptyset$. Thus the property G(n) will imply $x \in L(M) \iff x \in L(N)$, and getting this for all n and x of length n will yield the conclusion L(M) = L(N). So thus far we have defined:

- $Q = \{possible R \subseteq Q\};$
- S = E(s);
- $\mathcal{F} = \{ R \in \mathbf{Q} : R \cap F \neq \emptyset \}.$

And Σ is the same. The only component of M left to define is Δ . For any $P \in \mathbf{Q}$ and $c \in \Sigma$ define

$$\Delta(P,c) = \{r : for some p \in P, N can process c from p to r\}.$$

This set is automatically ϵ -closed, since $c \cdot \epsilon^* = c$ so any trailing ϵ -arcs can count as part of processing c. If we assume G(i-1) as our induction hypothesis, take the set R_{i-1} which the property G(i-1) refers to, and define $R_i = \Delta(R_{i-1}, x_i)$, then we only need to show that R_i has the property

required for the conclusion G(i). This is that R_i equals the set of states that N can process the bits $x_1 \cdots x_i$ to. The core of the proof is finally to observe that:

N can process $x_1x_2 \cdots x_{i-1}x_i$ from s to r if and only if there is a state p such that N can process $x_1x_2 \cdots x_{i-1}$ from s to p (which by IH G(i-1) includes p into R_{i-1}) and such that N can process the char x_i from p to r.

How does this finish the proof? Let's see... We can make a small change to the definition of $\Delta(P,c)$ that makes it quicker and less error-prone to calculate M from N, by a process that examples will view as an instance of *breadth-first search*.

Efficient Strategy and Example

We make a slight change to the heart of the proof where we left off. The change saves some time in executing the NFA-to-DFA construction when ϵ -arcs are present and reduces errors. First define

$$\delta(p,c) = E(\{q: (p,c,q) \in \delta\})$$

for any state $p \in Q$ and char c. Recall $E(\cdot)$ is ϵ -closure. So what this means in simple terms is:

- 1. **First** take arc(s) on c out of the state p.
 - If there are none, **stop** and put $\delta(p,c) = \emptyset$.
 - Else collect all states *q* reached on those arc(s).
- **2. Then,** for each state q reached by processing c, add states reached on any series of ϵ -arcs out of q, if there are any.

Now we can give a new definition of the DFA's transition function Δ : for any $P \subseteq Q$ and $c \in \Sigma$,

$$\Delta(P,c) = \bigcup_{p \in P} \underline{\delta}(p,c)$$
.

The difference is that we avoid worrying about initial ϵ -arcs that could come before processingf c. We only have to track *trailing* ones in a machine diagram. The reason is that the trailing arcs at the previous step already took care of any initial ones now. Initializing the start state S of the DFA M to have all states reached by ϵ -arcs out of S in S sets this in motion. We need to prove for all S:

$$G(i): \Delta^*(S, x_1 \cdots x_i) = \{r: N \text{ can process } x_1 \cdots x_i \text{ from } s \text{ to } r\}.$$

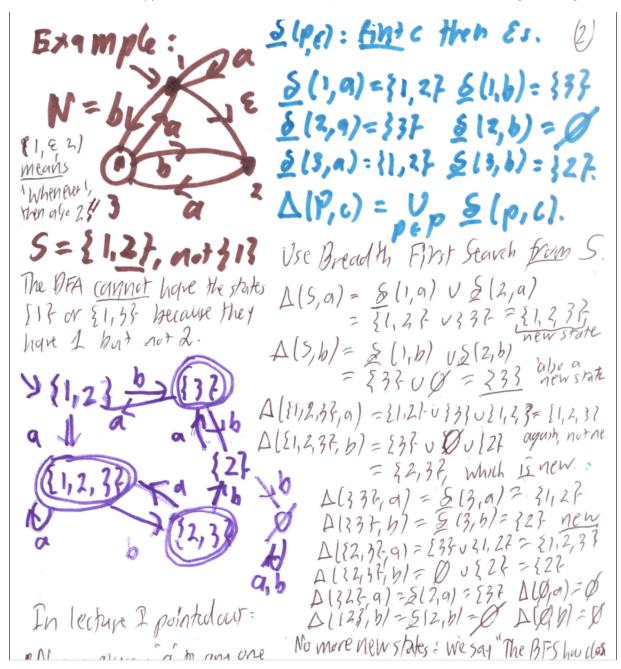
Here we have *extended* Δ , a function of a state and a char, to Δ^* which is a function of a state and a *string*, by the basis $\Delta^*(R, \epsilon) = R$ for all $R \in \mathbb{Q}$ and for $i \geq 1$,

$$\Delta^*(R, x_1 \cdots x_{i-1}x_i) = \Delta(\Delta^*(R, x_1 \cdots x_{i-1}), x_i).$$

So let R_{i-1} stand for $\Delta^*(S, x_1 \cdots x_{i-1})$. Then by the inductive hypothesis G(i-1), R_{i-1} equals the set of states q such that N can process $x_1 \cdots x_{i-1}$ from s to q. Now put $R_i = \Delta(R_{i-1}, x_i)$.

- Let $r \in R_i$. Then $r \in \underline{\delta}(q, x_i)$ for some $q \in R_{i-1}$. By IH G(i-1), N can process $x_1 \cdots x_{i-1}$ from s to q. And N can process x_i from q to r by definition of $r \in \underline{\delta}(q, x_i)$. So N can process $x_1 \cdots x_i$ from s to r.
- Suppose N can process $x_1 \cdots x_i$ from s to r. Then---and this is the key point---the processing goes to some state q just before the char x_i is processed. By IH G(i-1), q belongs to R_{i-1} . Moreover, $r \in \underline{\delta}(q,x_i)$ because we first do the step that processed the char x_i at q, then any trailing ϵ -arcs. Thus $r \in \Delta(R_{i-1},x_i)$, which means $r \in R_i$.

Thus we have established that R_i equals the set of states r such that N can process $x_1 \cdots x_i$ from s to r. This is the statement G(i), which is what we had to prove to make the induction go through. \boxtimes



The extra things pointed out have to do with how the states of the DFA tell what the NFA can and cannot process:

- The NFA cannot process the string bbb from its start state at all. However you try, you come to the NFA state 2 being unable to process a b. Nor can it process bbb from any other state.
- However, *N* can process *a* from start to any one of its three states:
 - -(1, a, 1)
 - $-(1, a, 1)(1, \epsilon, 2)$
 - $-(1,\epsilon,2)(2,a,3).$

This is shown in the DFA by the single arc $(S, a, \{1, 2, 3\})$.

• But in the string x = abbb, even though the initial a "turns on all three lightbulbs of N", the final bbb still cannot be processed by N. The DFA M does process it via the computation $(S, a, \{1, 2, 3\})(\{1, 2, 3\}, b, \{2, 3\})(\{2, 3\}, b, \{2\})(\{2\}, b, \emptyset)$, but that computation ends at \emptyset , which---when present at all---is always a dead state.