

The Main Theorem About Regular Expressions and Finite Automata

Theorem: For any language over an alphabet , the following statements are equivalent:A 𝛴

1. There is a regular expression such that .𝛼 A = L 𝛼()

2. There is an NFA such that .N A = L N()

3. There is a DFA such that .M A = L M()

Example (moved up from last time): The "Leap of Faith" NFAs for any :Nk k > 1

From NFA to DFA
Theorem (part two of Kleene's Theorem): Given any NFA we can build a DFA N = Q,𝛴, 𝛿, s, F()

 such that .M = Q,𝛴,𝛥, S,F() L M = L N() ()

Notice that got capitalized to , which hints that is a set rather than a single element. And got s S S 𝛿

capitalized to . and were already sets, but they got...curlier. What does that mean? Well, that 𝛥 Q F
they are "of an even higher order"---sets of sets, for instance. An important set of sets is:

 also written , called the power set of and defined as .P Q ,() 2Q Q R : R ⊆ Q{ }

. . .

0, 1

1

0 0 0

1 1 1

k - 1 arcs

L N = 0 + 1 1 0 + 1(k) ()* ()k-1

.= x ∈ 0, 1 : the kth bit of x from the end is a 1{ }*

Fact (will be proved later): Whereas the NFA has only states,Nk k + 1

 the smallest DFA such that requires states. Mk L M = L N(k) (k) 2k

This is a case of exponential blowup in the NFA-to-DFA algorithm.
For now, we just care that an equivalent DFA can be built.

q0
q1 q2 qk

On

Example: x = 101101 On OnOn

Unlike what textbooks tend to say, we will not necessarily make be all of , just those subsets Q P Q() R

that are reachable from . What this means is that the states of the DFA will be sets of states of the S

NFA---the states that are possible upon processing a given part of the input string .x

This suggests the question, which states (of) are possible before we process any chars in ? N x

Obviously the start state of is possible, but are there any others? Yes, if there are -transitions out s N 𝜖

of . Define to be the set of states of that are reachable this way. If has no -arcs (out of or s E s() N N 𝜖 s

overall), then is just . Thus we begin building by taking . We could have said " " E s() s{ } M S = E s() S

in place of " " to begin with, but the notation is useful to defineE s()

E R = r : for some q ∈ R, N can process 𝜖 from q to r() { }

for any subset of states. This is called the epsilon-closure of . If then is already R R E R = R() R

epsilon-closed. It sounds "weeny" technical, but we will only need to use subsets that are -closed. The 𝜖

insight is that the states of the DFA are the possible subsets of states of the NFA.

To make the DFA equivalent to the NFA, at least in terms of the language it accepts, we need to build
on the correspondence we started with and . Let be some input of length . For s S x ∈ 𝛴* n

 the design goal for is to arrange that:i = 0, 1, … , n - 1, n G i() M

 upon reading is in the state .M x x ⋯ x1 2 i R = r : N can process x x ⋯ x from s to ri { 1 2 i }

Now when , the initial portion is (more "Zen" reasoning), so turns out to be just i = 0 x x ⋯ x1 2 i 𝜖 R0

another name for . By setting , what we've done is achieve the property . We can E s() S = E s() G 0()

now use this as the basis for an induction which we build to achieve. This will G i - 1 ⟹ G i() () 𝛥

give us the final property , which states:G n()

 upon reading all of is in the state .M x R = r : N can process x from s to rn { }

Now accepts if and only if includes at least one accepting state , i.e., . N x Rn f ∈ F R ∩ F ≠ ∅n

Thus when we regard a possible subset as a state of , we should call it accepting if and only if R M

. Thus the property will imply , and getting this for all R ∩ F ≠ ∅ G n() x ∈ L M ⟺ x ∈ L N() () n

and of length will yield the conclusion . So thus far we have defined:x n L M = L N() ()

• Q = possible R ⊆ Q ;{ }

• ;S = E s()

• F = R ∈ Q : R ∩ F ≠ ∅ .{ }

And is the same. The only component of left to define is . For any and define𝛴 M 𝛥 P ∈ Q c ∈ 𝛴

.𝛥 P, c = r : for some p ∈ P, N can process c from p to r() { }

This set is automatically -closed, since so any trailing -arcs can count as part of 𝜖 c ⋅ 𝜖 = c*

𝜖

processing . If we assume as our induction hypothesis, take the set which the property c G i - 1() Ri-1

 refers to, and define , then we only need to show that has the property G i - 1() R = 𝛥 R , xi (i-1 i) Ri

required for the conclusion . This is that equals the set of states that can process the bits G i() Ri N

 to. The core of the proof is finally to observe that:x ⋯ x1 i

 can process if and only if there is a state such that can process N x x ⋯ x x from s to r1 2 i-1 i p N

 from to (which by IH includes into) and such that can process x x ⋯ x1 2 i-1 s p G i - 1() p Ri-1 N

the char from to . xi p r

How does this finish the proof? Let's see... We can make a small change to the definition of 𝛥 P, c()

that makes it quicker and less error-prone to calculate from , by a process that examples will view M N
as an instance of breadth-first search.

Example

We make a slight change to the heart of the proof where we left off. The change saves some time in
executing the NFA-to-DFA construction when -arcs are present and reduces errors. First define𝜖

p, c = E q : p, c, q ∈ 𝛿𝛿() ({ () })

for any state and char . Recall is -closure. So what this means in simple terms is:p ∈ Q c E ⋅() 𝜖

1. First take arc(s) on out of the state . c p

– If there are none, stop and put .p, c = ∅𝛿()

– Else collect all states reached on those arc(s).q

2. Then, for each state reached by processing , add states reached on any series of -arcs out q c 𝜖

of , if there are any.q

Now we can give a new definition of the DFA's transition function : for any and ,𝛥 P ⊆ Q c ∈ 𝛴

.𝛥 P, c = p, c () ⋃

p ∈ P

𝛿()

The difference is that we avoid worrying about initial -arcs that could come before processingf . We 𝜖 c
only have to track trailing ones in a machine diagram. The reason is that the trailing arcs at the
previous step already took care of any initial ones now. Initializing the start state of the DFA to S M

have all states reached by -arcs out of in sets this in motion. We need to prove for all :𝜖 s N i

G i : 𝛥 S, x ⋯ x = r : N can process x ⋯ x from s to r .() *(1 i) { 1 i }

Here we have extended , a function of a state and a char, to which is a function of a state and a 𝛥 𝛥
*

string, by the basis for all and for , 𝛥 R, 𝜖 = R*() R ∈ Q i ≥ 1

.𝛥 R, x ⋯ x x = 𝛥 𝛥 R, x ⋯ x , x*(1 i-1 i)

*(1 i-1) i

So let stand for . Then by the inductive hypothesis , equals the set Ri-1 𝛥 S, x ⋯ x*(1 i-1) G i - 1() Ri-1

of states such that can process from to . Now put . q N x ⋯ x1 i-1 s q R = 𝛥i (R , xi-1 i)

• Let . Then for some . By IH , can process r ∈ Ri r ∈ q, x 𝛿(i) q ∈ Ri-1 G i - 1() N x ⋯ x1 i-1

from to . And can process from to by definition of . So can process s q N xi q r r ∈ q, x 𝛿(i) N

 from to .x ⋯ x1 i s r

• Suppose can process from to . Then---and this is the key point---the processing N x ⋯ x1 i s r

goes to some state just before the char is processed. By IH , belongs to . q xi G i - 1() q Ri-1

Moreover, because we first do the step that processed the char at , then any r ∈ q, x𝛿(i) xi q

trailing -arcs. Thus , which means .𝜖 r ∈ 𝛥 R , x(i-1 i) r ∈ Ri

Thus we have established that equals the set of states such that can process from to Ri r N x ⋯ x1 i s

. This is the statement , which is what we had to prove to make the induction go through. This r G i()

finally proves the NFA-to-DFA part of Kleene's Theorem. ☒

The extra things pointed out have to do with how the states of the DFA tell what the NFA can and
cannot process:

• The NFA cannot process the string from its start state at all. However you try, you come to bbb

the NFA state 2 being unable to process a . Nor can it process from any other state.b bbb

• However, can process from start to any one of its three states:N a

– 1, a, 1()

– 1, a, 1 1, 𝜖, 2()()

– .1, 𝜖, 2 2, a, 3()()

This is shown in the DFA by the single arc .S, a, 1, 2, 3({ })

• But in the string , even though the initial "turns on all three lightbulbs of ", the final x = abbb a N

 still cannot be processed by . The DFA does process it via the computation bbb N M

, but that computation ends at , S, a, 1, 2, 3 1, 2, 3 , b, 2, 3 2, 3 , b, 2 2 , b,∅({ })({ } { })({ } { })({ }) ∅

which---when present at all---is always a dead state.

