
Lecture Monday, 9/14/20: GNFAs and Regular ExpressionsLecture Monday, 9/14/20: GNFAs and Regular Expressions
  
Another example: The "Leap of Faith" NFAs Another example: The "Leap of Faith" NFAs  for any  for any ::NNkk k k >>  1 1
  

  
  
Now here is a simple algorithm for telling whether a given string Now here is a simple algorithm for telling whether a given string   matchesmatches a given regexp  a given regexp ::xx 𝛼𝛼

  
1. 1. Convert Convert  into an equivalent NFA  into an equivalent NFA ..𝛼𝛼 NN𝛼𝛼

2. 2. Convert Convert  into an equivalent DFA  into an equivalent DFA ..NN𝛼𝛼 MM𝛼𝛼

3. 3. Run Run  on  on .  If it accepts, say ".  If it accepts, say "yesyes, it matches", else say "no match"., it matches", else say "no match".MM𝛼𝛼 xx
  

This algorithm is This algorithm is correctcorrect, but it is , but it is not efficientnot efficient.  The reason is that step 2 can blow up.  An intuitive reason for.  The reason is that step 2 can blow up.  An intuitive reason for  
the gross inefficieincy is that step 2 makes you create in advance all the "set states" that would ever bethe gross inefficieincy is that step 2 makes you create in advance all the "set states" that would ever be  
used on all possible strings used on all possible strings , but most of them are unnecessary for the particular , but most of them are unnecessary for the particular  that was given. that was given.    xx xx
  
There is, however, a better way that builds just the set-states There is, however, a better way that builds just the set-states  that are actually that are actually  RR ,, …… ,, RR ,, …… ,, RR11 ii nn

encountered in the particular computation on the particular encountered in the particular computation on the particular .  We have .  We have  to begin with.  To to begin with.  To  xx RR   ==  S  S ==  E E ss00 (( ))

build each build each  from the previous  from the previous , iterate through every , iterate through every  and union together all the sets  and union together all the sets ..  RRii RRi-1i-1 q q ∈∈ RRi-1i-1 qq,, xx𝛿𝛿(( ii))

 If  If  has  has  states---which roughly equals the number of operations in  states---which roughly equals the number of operations in ---then that takes order ---then that takes order   NN𝛼𝛼 kk 𝛼𝛼 nn ⋅⋅ kk ⋅⋅ kk

steps.  This is at worst cubic in the length steps.  This is at worst cubic in the length  of  of  and  and  together, so this counts as a  together, so this counts as a polynomial-polynomial-nn ++ kkOO(( )) xx 𝛼𝛼

time algorithmtime algorithm.  It is in fact the algorithm actually used by the .  It is in fact the algorithm actually used by the grepgrep command in Linux/UNIX. command in Linux/UNIX.    
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kk -- 1 arcs1 arcs

LL NN   ==   00 ++ 11 11 00 ++ 11(( kk)) (( ))** (( ))k-1k-1

..==   x x ∈∈   00,, 11 ::  the kth bit of x from the end is a 1 the kth bit of x from the end is a 1{{ }}**

FactFact (will be proved next week): Whereas the NFA  (will be proved next week): Whereas the NFA  has only  has only  states, states,NNkk kk ++ 11

 the smallest DFA  the smallest DFA  such that  such that  requires  requires  states.   states.  MMkk LL MM   ==  L L NN(( kk)) (( kk)) 22kk

This is a case of This is a case of exponential blowupexponential blowup in the NFA-to-DFA algorithm.  in the NFA-to-DFA algorithm. 



Generalized NFAs (GNFAs) --- having only 2 states.Generalized NFAs (GNFAs) --- having only 2 states.
  
A A generalized NFAgeneralized NFA   can have any regular expression on any arc. A string  can have any regular expression on any arc. A string  is "accepted" by  is "accepted" by  if it can be if it can be  GG xx GG

broken into broken into  substrings such that each substring matches the respective regexp in a path of  substrings such that each substring matches the respective regexp in a path of  arcs of  arcs of   mm mm GG

that begins at that begins at  and ends in a final state  and ends in a final state .  A regular NFA in in fact a GNFA in which every arc has a.  A regular NFA in in fact a GNFA in which every arc has a  
"basic""basic"  

ss ff

regular expression---that is, just a char regular expression---that is, just a char  in  in , or , or ..    cc 𝛴𝛴 𝜖𝜖

  
I do not regard GNFAs as "machines" that can be "executed"---even in the sense where we could say thatI do not regard GNFAs as "machines" that can be "executed"---even in the sense where we could say that  
the the grepgrep algorithm executed the NFA  algorithm executed the NFA  on  on .  I regard them as helpful shorthand for diagramming.  I regard them as helpful shorthand for diagramming  NN𝛼𝛼 xx

languages.  Note that the above diagram for languages.  Note that the above diagram for  makes the loop at its start state look like a GNFA arc makes the loop at its start state look like a GNFA arc  NNkk

labeled labeled .  The only reasoning for not using single arcs labeled .  The only reasoning for not using single arcs labeled  or  or  in the iterated part of the in the iterated part of the  00 ++ 11 00 ++ 11 00,, 11

machine is to emphasize the contrast with the single arc out of the start state labeled machine is to emphasize the contrast with the single arc out of the start state labeled  only.  With only.  With  11

concatenation and star the shorthand is more substantial.  The most illuminating case IMHO of this is forconcatenation and star the shorthand is more substantial.  The most illuminating case IMHO of this is for  
two-state GNFAs:two-state GNFAs:

  
Note that in Note that in , we called the second state , we called the second state  rather than  rather than  because it is not accepting.  No accepting because it is not accepting.  No accepting  GG22 tt ff

computation can begin or end at a non-final state computation can begin or end at a non-final state  that is different from the start state.  Hence, if the that is different from the start state.  Hence, if the  qq

computation enters computation enters  from some state  from some state , then it must exit at some state , then it must exit at some state  (which can be the same as  (which can be the same as ).).    qq pp rr pp

Considering multiple such states Considering multiple such states  gives us the following diagram: gives us the following diagram:rr,, r'r',, r''r''
  
General GNFA Case:General GNFA Case:

  

  

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ff
GG11

LL GG   ==  L L   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾   (( 11)) sfsf
**

**
**

                                              ==  𝛼 𝛼 𝛽𝛽 𝛾 𝛾 ++  𝜂𝛼 𝜂𝛼 𝛽𝛽** **
**

𝛽𝛽

𝜂𝜂

𝛼𝛼 𝛾𝛾

ss ttGG22

LL GG   ==  L L   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂(( 22)) ssss
**

**

 is pronounced "ate-a" in the US, "eat-a" in the UK. is pronounced "ate-a" in the US, "eat-a" in the UK.𝜂𝜂

𝛽𝛽

𝜂𝜂

ss ff
GG33

𝛼𝛼 𝛾𝛾

LL GG   ==  L L   ∪∪  L L(( 33)) ssss sfsf



  
If we are programming this with a If we are programming this with a RegExpRegExp package, then we can represent a given  package, then we can represent a given -state finite automaton-state finite automaton  nn

(DFA, NFA, or GNFA, all the same to start with) by an (DFA, NFA, or GNFA, all the same to start with) by an  matrix  matrix  of  of RegExpRegExp.  We can number the non-.  We can number the non-n n ××  n n TT

accepting states different from the start state by accepting states different from the start state by  for whatever  for whatever  applies.  (If start is the only applies.  (If start is the only  mm,, …… ,, nn mm

accepting state then we could take accepting state then we could take  as low as  as low as , but it saves "mess" to take , but it saves "mess" to take  in this case too so in this case too so  mm 22 m m ==  3 3

that execution will end with that execution will end with  above, at which point the answer can be shortcutted by saying what above, at which point the answer can be shortcutted by saying what  GG22

 are and citing the abstract formula.  Most sources say to add a new start state and make all are and citing the abstract formula.  Most sources say to add a new start state and make all  𝛼𝛼,, 𝛽𝛽,, 𝛾𝛾,, 𝜂𝜂
original final states go to a new one, but while doing this makes the proof look neater, it is more work that isoriginal final states go to a new one, but while doing this makes the proof look neater, it is more work that is  
highly typo-prone.)  Then let one loop variable highly typo-prone.)  Then let one loop variable  run over the nodes  run over the nodes  to be eliminated, let  to be eliminated, let  run over all run over all  kk qq ii

states up to states up to  which are treated as possible entry states  which are treated as possible entry states , and let , and let  run over potential exist states  run over potential exist states ..    kk -- 11 pp jj rr
Then the main code is simply:Then the main code is simply:
  
for k = n downto m:for k = n downto m:

for i = 1 to k-1:for i = 1 to k-1:
for j = 1 to k-1:for j = 1 to k-1:

T(i,j) += T(i,k)T(i,j) += T(i,k) T(k,k)T(k,k) T(k,j).T(k,j).⋅⋅ ⋅⋅
**

  
(The convenience of writing "+=" here is one reason I like using (The convenience of writing "+=" here is one reason I like using  rather than  rather than  for union.)  Note that even for union.)  Note that even  ++ ∪∪

if there is no self-loop at if there is no self-loop at , so that , so that  (or  (or ; it doesn't matter), the update is not killed because; it doesn't matter), the update is not killed because  qq TT kk,, kk   ==  ∅ ∅(( )) 𝜖𝜖

.  But if there is no arc from .  But if there is no arc from  into  into , that is, if , that is, if , then the right-hand side does get, then the right-hand side does get  TT kk,, kk   == 𝜖 𝜖 (( ))** ii kk TT ii,, kk   ==  ∅ ∅(( ))

nulled and the update is simply a no-op.  Likewise if no arc from nulled and the update is simply a no-op.  Likewise if no arc from  out to  out to , whereupon , whereupon ..    kk jj TT kk,, jj   ==  ∅ ∅(( ))

  

  

pp qq

rr

r'r'

r''r''

𝛽𝛽 𝛾𝛾

𝜂𝜂

𝜂''𝜂''

𝜂'𝜂'

𝛼𝛼

𝛼'𝛼'

𝛼''𝛼''

𝛼𝛼   ==  𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂newnew old old 
**

𝛼'𝛼'   ==  𝛼' 𝛼' ++  𝛽𝛾 𝛽𝛾 𝜂'𝜂'newnew old old 
**

𝛼''𝛼''   ==  𝛼'' 𝛼'' ++  𝛽𝛾 𝛽𝛾 𝜂''𝜂''newnew old old 
**

The last works if The last works if  when  when p p ==  r'' r''

 is a self-loop at  is a self-loop at .  If the self-.  If the self-𝛼''𝛼'' pp
loop is absent, it turns out not toloop is absent, it turns out not to
matter whether you take it to givematter whether you take it to give

 or  or .  The reason is that it will.  The reason is that it will∅∅ 𝜖𝜖
ultimately be inside a Kleene star,ultimately be inside a Kleene star,
and and ∅∅((   ++ 𝜁 𝜁   ==   𝜖 𝜖 ++  𝜁 𝜁   ==  𝜁 𝜁))** (( ))** **

for any regular expression for any regular expression  (zeta).  (zeta). 𝜁𝜁

If the arc with If the arc with  is absent, that is is absent, that is𝛼𝛼

the same as its having the same as its having .  .  𝛼 𝛼 ==  ∅ ∅

Once we have Once we have bypassedbypassed every every
edge into edge into , we can , we can deletedelete  ..qq qq

The GNFA The GNFA  obtained after  obtained after G'G'

updating updating  is is𝛼𝛼,,𝛼'𝛼',,𝛼''𝛼'',, ……

equivalent to the original equivalent to the original ..GG



  
The result of executing the code is a GNFA The result of executing the code is a GNFA  with all states accepting except possibly the start state.  If with all states accepting except possibly the start state.  If  G'G'

the start state, too, is accepting, it is tempting to think the start state, too, is accepting, it is tempting to think , i.e., that , i.e., that  accepts all strings, but that is accepts all strings, but that is  LL G'G'   ==  𝛴 𝛴(( )) G'G'

not true because GNFA arcs can have "holes" that prevent matching and hence processing all strings.  Fornot true because GNFA arcs can have "holes" that prevent matching and hence processing all strings.  For  
example, consider the simple one-state GNFAexample, consider the simple one-state GNFA
  
  

  
So if you get a So if you get a  with two or more accepting states different from the start state, then you do have with two or more accepting states different from the start state, then you do haveG'G'

to add a new final state to add a new final state  with arcs from all the old final states, declare  with arcs from all the old final states, declare  to be the only final state, and to be the only final state, and  ff ff

eliminate all of the previous accepting states apart from eliminate all of the previous accepting states apart from .  If you also make .  If you also make  a new, non-accepting state, a new, non-accepting state,  ss ss

then you do get the final answer then you do get the final answer  "on a silver platter": "on a silver platter":𝜌 𝜌 ==  L L GG(( ))

  
  

  
But the final expression But the final expression  you get is often quite long, and the steps for the last one or two states you you get is often quite long, and the steps for the last one or two states you  𝜌𝜌

eliminated often amount to hand-copying long subexpressions corresponding to eliminated often amount to hand-copying long subexpressions corresponding to  in the above in the above  𝛼𝛼,, 𝛽𝛽,, 𝛾𝛾,, 𝜂𝜂

formulas for the 2-state GNFAs anyway.  The ground rules are hence that once you get down to two states,formulas for the 2-state GNFAs anyway.  The ground rules are hence that once you get down to two states,  
you can just cite the abstract formula to say what the final regular expression will be.  And if the originallyyou can just cite the abstract formula to say what the final regular expression will be.  And if the originally  
given GNFA has at most one accpeting state besides the start state, then the above code body will givegiven GNFA has at most one accpeting state besides the start state, then the above code body will give  
your final answer without needing to add a new final state.  Why add one or two iterations to the outside of ayour final answer without needing to add a new final state.  Why add one or two iterations to the outside of a  
triply-nested loop if you can avoid it?triply-nested loop if you can avoid it?
  
Anyway, what we have proved is:Anyway, what we have proved is:
  
Theorem.Theorem.  Given any DFA, NFA, or GNFA   Given any DFA, NFA, or GNFA , we can calculate a regular expression , we can calculate a regular expression  (Greek rho) such (Greek rho) such  
thatthat  

GG 𝜌𝜌

..LL 𝜌𝜌   ==  L L GG(( )) (( ))

  
This also completes the proof of the final part of Kleene's Theorem.This also completes the proof of the final part of Kleene's Theorem.    

  

  

0101

GG00
ss

Then Then  but this is not all strings.  The reason is  but this is not all strings.  The reason is LL GG   ==   0101(( 00)) (( ))**

that that  was really abbreviating the NFA shown below, which was really abbreviating the NFA shown below, whichGG00

can "crash" on can "crash" on  at its start state and on  at its start state and on  at state  at state ::11 00 tt

G'G'00
ss tt

00

11

𝜌𝜌
ss ff



  
Example---revisiting a previous NFA:Example---revisiting a previous NFA:

  
We want to eliminate state 2.  If we were using the code approach, we could re-number it as state 3.  ButWe want to eliminate state 2.  If we were using the code approach, we could re-number it as state 3.  But  
we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations of them.we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations of them.  
 Here we have: Here we have:
  
In: 1 (on In: 1 (on ) and ) and  (on  (on ).).𝜖𝜖 33 bb

Out: only to Out: only to  (on  (on ).).33 aa

Update: Update:  and  and TT 11,, 33(( )) TT 33,, 33 ..(( ))

  
TT 11,, 33   ==  T T 11,, 33   ++  T T 11,, 22 TT 22,, 22 TT 22,, 33(( ))newnew (( ))oldold (( )) (( ))** (( ))

                                  ==  b  b ++  𝜖 𝜖 ⋅⋅ 𝜖𝜖 ⋅⋅ a a ==  b  b ++  a a..

TT 33,, 33   ==  T T 33,, 33   ++  T T 33,, 22 TT 22,, 22 TT 22,, 33(( ))newnew (( ))oldold (( )) (( ))** (( ))

                                  ==  ∅  ∅ ++  b b ⋅⋅ 𝜖𝜖 ⋅⋅ a a ==  ba ba..

  
The new GNFA isThe new GNFA is
  

  
[If time permits, some philosophical discussion will follow.][If time permits, some philosophical discussion will follow.]

  

  

𝛽 𝛽 ==  b b ++ aa

𝜂 𝜂 ==  a a

𝛼 𝛼 ==  a a 𝛾 𝛾 ==  ba ba

11 33GG11

LL GG   ==  L L   ==   𝛼 𝛼 ++  𝛽𝛾 𝛽𝛾 𝜂𝜂 𝛽𝛾𝛽𝛾   (( 11)) sfsf
**

**
**

==   a a ++   bb ++ aa baba aa bb ++ aa baba ..(( (( ))(( ))**
**
(( ))(( ))**


