
CSE491/596 Fall 2023: Finishing Kleene's Theorem
 
Note, first, that if  and  are languages represented by regular expressions  and , then  A B 𝛼 𝛽 𝛼 + 𝛽

denotes .  To show that the complement of  is regular, however, you need to convert  into an A ∪  B A 𝛼

equivalent DFA .  Then the complement of , which I write as  or , is the M  =  Q, 𝛴, 𝛿, s, FA ( ) A A ∼ A

langauge of .  This trick does not work with an NFA in general.  M'  =  Q, 𝛴, 𝛿, s, Q ⧵ FA ( )

 
Generalized NFAs (GNFAs) --- starting with those having only 2 states.
 
A generalized NFA  can have any regular expression on any arc. A string  is "accepted" by  if it can G x G

be broken into  substrings such that each substring matches the respective regexp in a path of  m m

arcs of  that begins at  and ends in a final state .  A regular NFA in in fact a GNFA in which every G s f

arc has a "basic" regular expression---that is, just a char  in , or .  c 𝛴 𝜖
 
I do not regard GNFAs as "machines" that can be "executed"---even in the sense where we could say 
that the grep algorithm executed the NFA  on .  I regard them as helpful shorthand for N𝛼 x

diagramming languages.  Note that the above diagram for  makes the loop at its start state look like Nk

a GNFA arc labeled .  The only reasoning for not using single arcs labeled  or  in the 0 + 1 0 + 1 0, 1

iterated part of the machine is to emphasize the contrast with the single arc out of the start state 
labeled  only.  With concatenation and star the shorthand is more substantial.  The most illuminating 1

case IMHO of this is for two-state GNFAs:

 
Note that in , we called the second state  rather than  because it is not accepting.  G2 t f
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L G  =  L  =  𝛼 +  𝛽𝛾 𝜂 𝛽𝛾  ( 1) sf
* * *

                       =  𝛼 𝛽 𝛾 +  𝜂𝛼 𝛽* * *
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L G  =  L  =  𝛼 +  𝛽𝛾 𝜂( 2) ss
* *

 is pronounced "ate-a" in the US, "eat-a" in the UK.𝜂
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𝛼 𝛾

L G  =  L  ∪  L( 3) ss sf

=  𝛼 +  𝛽𝛾 𝜂 ⋅ 𝜖 +  𝛽𝛾  * * *

=   𝛼 +  𝛽𝛾 𝜂 ⋅ 𝛽𝛾   +   𝛼 +  𝛽𝛾 𝜂 ⋅ 𝜖 *
*

* *
*



 
No accepting computation can begin or end at a non-final state  that is different from the start state.  q

Hence, if the computation enters  from some state , then it must exit at some state  (which can be q p r

the same as ).  Considering multiple such states  gives us the following diagram:p r, r', r''
 
General GNFA Case:

 
If we are programming this with a RegExp package, then we can represent a given -state finite n

automaton (DFA, NFA, or GNFA, all the same to start with) by an  matrix  of RegExp.  We can n ×  n T

number the non-accepting states different from the start state by  for whatever  applies.  (If m, … , n m

start is the only accepting state then we could take  as low as , but it saves "mess" to take  m 2 m =  3

in this case too so that execution will end with  above, at which point the answer can be shortcutted G2

by saying what  are and citing the abstract formula.  Most sources say to add a new start state 𝛼, 𝛽, 𝛾, 𝜂
and make all original final states go to a new one, but while doing this makes the proof look neater, it is 
more work that is highly typo-prone.)  Then let one loop variable  run over the nodes  to be k q

eliminated, let  run over all states up to  which are treated as possible entry states , and let  run i k - 1 p j

over potential exist states .  Then the main code is simply:r
 
for k = n downto 3:   //eliminate state k

for i = 1 to k-1:      //consider all ways In to k
for j = 1 to k-1:  //loop over all ways Out of k

T(i,j)new = T(i,j)old + T(i,k) T(k,k) T(k,j).⋅ ⋅
*
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𝛼  =  𝛼 +  𝛽𝛾 𝜂new old 
*

𝛼'  =  𝛼' +  𝛽𝛾 𝜂'new old 
*

𝛼''  =  𝛼'' +  𝛽𝛾 𝜂''new old 
*

The last works if  when p =  r''

 is a self-loop at .  If the self-𝛼'' p
loop is absent, it turns out not to
matter whether you take it to give

 or .  The reason is that it will∅ 𝜖
ultimately be inside a Kleene star,
and ∅(  + 𝜁  =  𝜖 +  𝜁  =  𝜁)* ( )* *

for any regular expression  (zeta). 𝜁

If the arc with  is absent, that is𝛼

the same as its having .  𝛼 =  ∅

Once we have bypassed every
edge into , we can delete .q q

The GNFA  obtained after G'

updating  is𝛼, 𝛼', 𝛼'', …

equivalent to the original .G

𝛽

Note ∅  =  𝜖*



 
(The convenience of writing "+=" here is one reason I like using  rather than  for union.)  Note that + ∪

even if there is no self-loop at , so that  (or ; it doesn't matter), the update is not killed q T k, k  =  ∅( ) 𝜖

because .  But if there is no arc from  into , that is, if , then the right-hand T k, k  = 𝜖 ( )* i k T i, k  =  ∅( )

side does get nulled and the update is simply a no-op.  Likewise if no arc from  out to , whereupon k j

.  T k, j  =  ∅( )

 
The result of executing the code is a GNFA  with all states accepting except possibly the start state.  G'

If the start state, too, is accepting, it is tempting to think , i.e., that  accepts all strings, but L G'  =  𝛴( ) G'

that is not true because GNFA arcs can have "holes" that prevent matching and hence processing all 
strings.  For example, consider the simple one-state GNFA

So if you get a  with two or more accepting states different from the start state, then you do haveG'

to add a new final state  with -arcs from all the old final states, declare  to be the only final state, f 𝜖 f

and eliminate all of the previous accepting states apart from .  If you also make  a new, non-accepting s s

state, then you do get the final answer  "on a silver platter":𝜌 =  L G( )

But the final expression  you get is often quite long, and the steps for the last one or two states you 𝜌

eliminated often amount to hand-copying long subexpressions corresponding to  in the above 𝛼, 𝛽, 𝛾, 𝜂
formulas for the 2-state GNFAs anyway.  The ground rules are hence that once you get down to two 
states, you can just cite the abstract formula to say what the final regular expression will be.  And if the 
originally given GNFA has at most one accpeting state besides the start state, then the above code 
body will give your final answer without needing to add a new final state.  Why add one or two iterations 
to the outside of a triply-nested loop if you can avoid it?
 
Anyway, what we have proved is:
 
Theorem.  Given any DFA, NFA, or GNFA , we can calculate a regular expression  (Greek rho) such G 𝜌

that .L 𝜌  =  L G( ) ( )

 
This also completes the proof of the final part of Kleene's Theorem.  
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Then  but this is not all strings.  The reason is L G  =  01( 0) ( )*

that  was really abbreviating the NFA shown below, whichG0

can "crash" on  at its start state and on  at state :1 0 t

G'0
s t
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Example---revisiting a previous NFA:

We want to eliminate state 2.  If we were using the code approach, we could re-number it as state 3.  
But we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations 
of them.  Here we have:
 
In: 1 (on ) and  (on ).𝜖 3 b

Out: only to  (on ).3 a

Update:  and T 1, 3( ) T 3, 3 .( )

 
T 1, 3  =  T 1, 3  +  T 1, 2 T 2, 2 T 2, 3( )new ( )old ( ) ( )* ( )

                 =  b +  𝜖 ⋅ 𝜖 ⋅ a =  b +  a.

T 3, 3  =  T 3, 3  +  T 3, 2 T 2, 2 T 2, 3( )new ( )old ( ) ( )* ( )

                 =  ∅ +  b ⋅ 𝜖 ⋅ a =  ba.

 
[Suppose we try to update .  The rule would beT 3, 1( )

T 3, 1  =  T 3, 1  +  T 3, 2 T 2, 2 T 2, 1( )new ( )old ( ) ( )* ( )

                    because there is no arc from 2 to 1.=   a  +   b ⋅  𝜖 ⋅  ∅

                 , which is no change from .]=   a    +    ∅   =    a T 3, 1( )old
 
The new GNFA is

 

 

𝛽 =  b + a

𝜂 =  a

𝛼 =  a 𝛾 =  ba

1 3G1

L G  =  L  =  𝛼 +  𝛽𝛾 𝜂 𝛽𝛾  ( 1) sf
* * *

=  a +  b + a ba a b + a ba .( )( )*
*
( )( )*




