
CSE491/596 Fall 2023: Finishing Kleene's Theorem

Note, first, that if and are languages represented by regular expressions and , then A B 𝛼 𝛽 𝛼 + 𝛽

denotes . To show that the complement of is regular, however, you need to convert into an A ∪ B A 𝛼

equivalent DFA . Then the complement of , which I write as or , is the M = Q, 𝛴, 𝛿, s, FA () A A ∼ A

langauge of . This trick does not work with an NFA in general. M' = Q, 𝛴, 𝛿, s, Q ⧵ FA ()

Generalized NFAs (GNFAs) --- starting with those having only 2 states.

A generalized NFA can have any regular expression on any arc. A string is "accepted" by if it can G x G

be broken into substrings such that each substring matches the respective regexp in a path of m m

arcs of that begins at and ends in a final state . A regular NFA in in fact a GNFA in which every G s f

arc has a "basic" regular expression---that is, just a char in , or . c 𝛴 𝜖

I do not regard GNFAs as "machines" that can be "executed"---even in the sense where we could say
that the grep algorithm executed the NFA on . I regard them as helpful shorthand for N𝛼 x

diagramming languages. Note that the above diagram for makes the loop at its start state look like Nk

a GNFA arc labeled . The only reasoning for not using single arcs labeled or in the 0 + 1 0 + 1 0, 1

iterated part of the machine is to emphasize the contrast with the single arc out of the start state
labeled only. With concatenation and star the shorthand is more substantial. The most illuminating 1

case IMHO of this is for two-state GNFAs:

Note that in , we called the second state rather than because it is not accepting. G2 t f

𝛽

𝜂

𝛼 𝛾

s f
G1

L G = L = 𝛼 + 𝛽𝛾 𝜂 𝛽𝛾 (1) sf
* * *

 = 𝛼 𝛽 𝛾 + 𝜂𝛼 𝛽* * *

𝛽

𝜂

𝛼 𝛾

s tG2

L G = L = 𝛼 + 𝛽𝛾 𝜂(2) ss
* *

 is pronounced "ate-a" in the US, "eat-a" in the UK.𝜂

𝛽

𝜂

s f
G3

𝛼 𝛾

L G = L ∪ L(3) ss sf

= 𝛼 + 𝛽𝛾 𝜂 ⋅ 𝜖 + 𝛽𝛾 * * *

= 𝛼 + 𝛽𝛾 𝜂 ⋅ 𝛽𝛾 + 𝛼 + 𝛽𝛾 𝜂 ⋅ 𝜖 *
*

* *
*

No accepting computation can begin or end at a non-final state that is different from the start state. q

Hence, if the computation enters from some state , then it must exit at some state (which can be q p r

the same as). Considering multiple such states gives us the following diagram:p r, r', r''

General GNFA Case:

If we are programming this with a RegExp package, then we can represent a given -state finite n

automaton (DFA, NFA, or GNFA, all the same to start with) by an matrix of RegExp. We can n × n T

number the non-accepting states different from the start state by for whatever applies. (If m, … , n m

start is the only accepting state then we could take as low as , but it saves "mess" to take m 2 m = 3

in this case too so that execution will end with above, at which point the answer can be shortcutted G2

by saying what are and citing the abstract formula. Most sources say to add a new start state 𝛼, 𝛽, 𝛾, 𝜂
and make all original final states go to a new one, but while doing this makes the proof look neater, it is
more work that is highly typo-prone.) Then let one loop variable run over the nodes to be k q

eliminated, let run over all states up to which are treated as possible entry states , and let run i k - 1 p j

over potential exist states . Then the main code is simply:r

for k = n downto 3: //eliminate state k

for i = 1 to k-1: //consider all ways In to k
for j = 1 to k-1: //loop over all ways Out of k

T(i,j)new = T(i,j)old + T(i,k) T(k,k) T(k,j).⋅ ⋅
*

p q

r

r'

r''

𝜂

𝜂''

𝜂'

𝛼

𝛼'

𝛼''

𝛼 = 𝛼 + 𝛽𝛾 𝜂new old
*

𝛼' = 𝛼' + 𝛽𝛾 𝜂'new old
*

𝛼'' = 𝛼'' + 𝛽𝛾 𝜂''new old
*

The last works if when p = r''

 is a self-loop at . If the self-𝛼'' p
loop is absent, it turns out not to
matter whether you take it to give

 or . The reason is that it will∅ 𝜖
ultimately be inside a Kleene star,
and ∅(+ 𝜁 = 𝜖 + 𝜁 = 𝜁)* ()* *

for any regular expression (zeta). 𝜁

If the arc with is absent, that is𝛼

the same as its having . 𝛼 = ∅

Once we have bypassed every
edge into , we can delete .q q

The GNFA obtained after G'

updating is𝛼, 𝛼', 𝛼'', …

equivalent to the original .G

𝛽

Note ∅ = 𝜖*

(The convenience of writing "+=" here is one reason I like using rather than for union.) Note that + ∪

even if there is no self-loop at , so that (or ; it doesn't matter), the update is not killed q T k, k = ∅() 𝜖

because . But if there is no arc from into , that is, if , then the right-hand T k, k = 𝜖 ()* i k T i, k = ∅()

side does get nulled and the update is simply a no-op. Likewise if no arc from out to , whereupon k j

. T k, j = ∅()

The result of executing the code is a GNFA with all states accepting except possibly the start state. G'

If the start state, too, is accepting, it is tempting to think , i.e., that accepts all strings, but L G' = 𝛴() G'

that is not true because GNFA arcs can have "holes" that prevent matching and hence processing all
strings. For example, consider the simple one-state GNFA

So if you get a with two or more accepting states different from the start state, then you do haveG'

to add a new final state with -arcs from all the old final states, declare to be the only final state, f 𝜖 f

and eliminate all of the previous accepting states apart from . If you also make a new, non-accepting s s

state, then you do get the final answer "on a silver platter":𝜌 = L G()

But the final expression you get is often quite long, and the steps for the last one or two states you 𝜌

eliminated often amount to hand-copying long subexpressions corresponding to in the above 𝛼, 𝛽, 𝛾, 𝜂
formulas for the 2-state GNFAs anyway. The ground rules are hence that once you get down to two
states, you can just cite the abstract formula to say what the final regular expression will be. And if the
originally given GNFA has at most one accpeting state besides the start state, then the above code
body will give your final answer without needing to add a new final state. Why add one or two iterations
to the outside of a triply-nested loop if you can avoid it?

Anyway, what we have proved is:

Theorem. Given any DFA, NFA, or GNFA , we can calculate a regular expression (Greek rho) such G 𝜌

that .L 𝜌 = L G() ()

This also completes the proof of the final part of Kleene's Theorem.

01

G0
s

Then but this is not all strings. The reason is L G = 01(0) ()*

that was really abbreviating the NFA shown below, whichG0

can "crash" on at its start state and on at state :1 0 t

G'0
s t

0

1

𝜌
s f

Example---revisiting a previous NFA:

We want to eliminate state 2. If we were using the code approach, we could re-number it as state 3.
But we can also do it "graphically": list the "In"coming and "Out"going arcs and update all combinations
of them. Here we have:

In: 1 (on) and (on).𝜖 3 b

Out: only to (on).3 a

Update: and T 1, 3() T 3, 3 .()

T 1, 3 = T 1, 3 + T 1, 2 T 2, 2 T 2, 3()new ()old () ()* ()

 = b + 𝜖 ⋅ 𝜖 ⋅ a = b + a.

T 3, 3 = T 3, 3 + T 3, 2 T 2, 2 T 2, 3()new ()old () ()* ()

 = ∅ + b ⋅ 𝜖 ⋅ a = ba.

[Suppose we try to update . The rule would beT 3, 1()

T 3, 1 = T 3, 1 + T 3, 2 T 2, 2 T 2, 1()new ()old () ()* ()

 because there is no arc from 2 to 1.= a + b ⋅ 𝜖 ⋅ ∅

 , which is no change from .]= a + ∅ = a T 3, 1()old

The new GNFA is

𝛽 = b + a

𝜂 = a

𝛼 = a 𝛾 = ba

1 3G1

L G = L = 𝛼 + 𝛽𝛾 𝜂 𝛽𝛾 (1) sf
* * *

= a + b + a ba a b + a ba .()()*
*
()()*

