CSE491/596 Lecture Friday 9/18/20: Myhill-Nerode Theorem

GivenaDFAM = (Q,%,0,s,F) and two strings x,y € X*, suppose 6°(s, x) and 6*(s, y) both give
the same state 4. Then for any further string z € X7, the computations on the strings xz and yz go
through the same states after 4. In particular, they end at the same state .

« Ifr € F,thenxz € Landyz € L,whereL = L(M).
* Ifr ¢ F,thenxz ¢ Landyz ¢ L.
+ Either way, , for all z.

Suppose, on the other hand, we have strings X, i for which there exists a string z such that

Then M cannot process x and y to the same state. Moreover, this goes for any DFA M such that
L(M) = L. In particular, every such DFA must at least have two states.

Now let us build some definitions around these ideas. Given any language L (not necessarily regular)
and strings x, i "over" the alphabet X that L is "over", define:

« x and y are L-equivalent, written x ~ | y,ifforallz € X*, L(xz) = L(yz).
* x and y are distinctive for L, written x + | v, if there exists z € X* s.t. L(xz) # L(yz).

Lemma 1. The relation ~ ; is an equivalence relation.

Proof: We need to show that it is
* Reflexive: x ~ | x is obvious.
* Symmetric: indeed, ¥ ~ ; x immediately means the same as x ~ | y.
* Transitive: Suppose w ~ ;| x andx ~ | . This means:
— forallv € X*, L(wv) = L(xv) and
—forallz € X7, L(xz) = L(yz).
Because v and z range over the same span of strings, it follows that
— forallz € X, L(wz) = L(xz) and L(xz) = L(yz).
Hence we get:
— forallz € X*, L(wz)
Sow ~ Y.
This ends the proof.

L(yz).

Any equivalence relation on a set such as X* partitions that set into disjoint equivalence classes. So
x + 1 yis the same as saying x and y belong to different equivalence classes. [l intended to give an
example but skipped it after the initial loss of time: Start with the language E of strings having an even



number of 1s. Then the relation ~ p has exactly two equivalence classes: one for an even number of
1s, the other for odd. Now if you make E3 be the language where the number of 1s is a multiple of 3,
you get 3 equivalence classes. And so on...]

Now say that a set S of strings is Pairwise Distinctive for L if all of its strings belong to separate
equivalence classes under the relation ~ ;. Other names we will use are "distinctive set" and "PD
set" for L. This is the same as saying:

« forallx,y € S,x # y,thereexistsz € X” suchthat L(xz) # L(yz).
Thus we can re-state something we said above as:

Lemma 2. If L. has a PD set S of size 2, then any DFA M such that L(M) = L must process the two
strings in S to different states, so M must have at least 2 states.

Note: "L has" does not mean S must be a subset of L, it just means "has by association." Now we
can take this logic further:

Lemmak. If L has a PD set S of size k, then any DFA M such that L(M) = L must process the k
strings in S to different states, so M must have at least k states.

I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we
have a DFA M with k — 1 or fewer states such that L(M) = L . Then there must be (at least) two
strings in S that M processes to the same state. This follows by the Pigeonhole Principle.

[tell story]
[finish proof]
Then explain why we get the infinite case:

Lemma oo. If L has a PD set S of size co, then any DFA M such that L(M) = L must process the
strings in S to different states, so M must have at least co states...but then M is not a finite
automaton. So L is not accepted by any finite automaton...which means L is not a regular
language.

Myhill-Nerode Theorem, first half: If L has an infinite PD set, then L is not regular.

Example: L = {a” b" :n > 0}. X ={ab}. S = {a”: n > 0} = a*. Letanyx,y € S,

x # v, be given. Then there are different numbers i and j suchthatx = a’andy = a/. Take

z = b'. Thenxz = a'b’ € L,butyz = a/ b' ¢ L,becausei # j. Thus L(xz) # L(yz). Thus
forallx,y € Swithx # y,there exists z such that L(xz) # L(yz). Thus Sis PD for L. Since S is
infinite, L is not regular, by MNT.



[Then | drew a connection from this to the idea of playing the spears-and-dragons game when you
can save any number of spears. In the basic case where you can save at most 1 spear the DFA has
3 states, and these are mandated because S = {¢,$, D} is a PD set of size 3. In particular, even
though both x = eandy = $ are strings in the language L; of the 1-spear game, they are
distinctive for L, because z = D Kkills you in the former case (i.e., xz = €D = D ¢ L) butyou
stay alive in the latter case (i.e., yz = $D € L;). If you can save up to 2 spears, then €, $, $$ are
three distinctive strings (plus D to make a fourth). Well, if you can save unlimited spears, then

Seo = {€,%,%%,%%9%, ...} becomes an infinite PD set by similar logic to the {a” b”} example. So

the most liberal form of the game gives no longer a regular language.]



