CSE491/596 Lecture Friday 9/18/20: Myhill-Nerode Theorem

Given a DFA $M = (Q, \Sigma, \delta, s, F)$ and two strings $x, y \in \Sigma^*$, suppose $\delta^*(s, x)$ and $\delta^*(s, y)$ both give the same state q. Then for any further string $z \in \Sigma^*$, the computations on the strings xz and yz go through the same states after q. In particular, they end at the same state r.

- If $r \in F$, then $xz \in L$ and $yz \in L$, where L = L(M).
- If $r \notin F$, then $xz \notin L$ and $yz \notin L$.
- Either way, L(xz) = L(yz), for all z.

Suppose, on the other hand, we have strings x, y for which there exists a string z such that

$$L(xz) \neq L(yz).$$

Then *M* cannot process *x* and *y* to the same state. Moreover, this goes for *any* DFA *M* such that L(M) = L. In particular, every such DFA must at least *have* two states.

Now let us build some definitions around these ideas. Given any language L (not necessarily regular) and strings x, y "over" the alphabet Σ that L is "over", define:

- x and y are *L*-equivalent, written $x \sim L y$, if for all $z \in \Sigma^*$, L(xz) = L(yz).
- x and y are distinctive for L, written $x \not\sim L y$, if there exists $z \in \Sigma^*$ s.t. $L(xz) \neq L(yz)$.

Lemma 1. The relation $\sim L$ is an equivalence relation.

Proof: We need to show that it is

- Reflexive: $x \sim L x$ is obvious.
- Symmetric: indeed, $y \sim L x$ immediately means the same as $x \sim L y$.
- Transitive: Suppose $w \sim L x$ and $x \sim L y$. This means:
 - for all $v \in \Sigma^*$, L(wv) = L(xv) and
 - for all $z \in \Sigma^*$, L(xz) = L(yz).

Because v and z range over the same span of strings, it *follows* that

- for all $z \in \Sigma^*$, L(wz) = L(xz) and L(xz) = L(yz). Hence we get:
- for all $z \in \Sigma^*$, L(wz) = L(yz).

So $w \sim L y$.

This ends the proof. \square

Any equivalence relation on a set such as Σ^* partitions that set into disjoint *equivalence classes*. So $x \not\sim_L y$ is the same as saying x and y belong to different equivalence classes. [I intended to give an example but skipped it after the initial loss of time: Start with the language E of strings having an even

number of 1s. Then the relation $\sim E$ has exactly two equivalence classes: one for an even number of 1s, the other for odd. Now if you make E_3 be the language where the number of 1s is a multiple of 3, you get 3 equivalence classes. And so on...]

Now say that a set *S* of strings is *Pairwise Distinctive for L* if all of its strings belong to separate equivalence classes under the relation \sim_L . Other names we will use are "distinctive set" and "PD set" for *L*. This is the same as saying:

• for all $x, y \in S$, $x \neq y$, there exists $z \in \Sigma^*$ such that $L(xz) \neq L(yz)$.

Thus we can re-state something we said above as:

Lemma 2. If *L* has a PD set *S* of size 2, then any DFA *M* such that L(M) = L must process the two strings in *S* to different states, so *M* must have at least 2 states.

Note: "L has" does not mean S must be a subset of L, it just means "has by association." Now we can take this logic further:

Lemma k. If L has a PD set S of size k, then any DFA M such that L(M) = L must process the k strings in S to different states, so M must have at least k states.

I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we have a DFA M with k-1 or fewer states such that L(M) = L. Then there must be (at least) two strings in S that M processes to the same state. This follows by the **Pigeonhole Principle**.

[tell story] [finish proof] Then explain why we get the infinite case:

Lemma ∞ . If *L* has a PD set *S* of size ∞ , then any DFA *M* such that L(M) = L must process the strings in *S* to different states, so *M* must have at least ∞ states...but then *M* is not a *finite* automaton. So *L* is not accepted by any finite automaton...which means *L* is not a regular language.

Myhill-Nerode Theorem, first half: If L has an infinite PD set, then L is not regular.

Example: $L = \{a^n b^n : n \ge 0\}$. $\Sigma = \{a, b\}$. $S = \{a^n : n \ge 0\} = a^*$. Let any $x, y \in S$, $x \ne y$, be given. Then there are different numbers i and j such that $x = a^i$ and $y = a^j$. Take $z = b^i$. Then $xz = a^i b^i \in L$, but $yz = a^j b^i \notin L$, because $i \ne j$. Thus $L(xz) \ne L(yz)$. Thus for all $x, y \in S$ with $x \ne y$, there exists z such that $L(xz) \ne L(yz)$. Thus S is PD for L. Since S is infinite, L is not regular, by MNT.

[Then I drew a connection from this to the idea of playing the spears-and-dragons game when you can save any number of spears. In the basic case where you can save at most 1 spear the DFA has 3 states, and these are mandated because $S = \{\epsilon, \$, D\}$ is a PD set of size 3. In particular, even though both $x = \epsilon$ and y = \$ are strings in the language L_1 of the 1-spear game, they are distinctive for L_1 because z = D kills you in the former case (i.e., $xz = \epsilon D = D \notin L_1$) but you stay alive in the latter case (i.e., $yz = \$D \in L_1$). If you can save up to 2 spears, then ϵ , \$, \$\$ are three distinctive strings (plus D to make a fourth). Well, if you can save unlimited spears, then $S_{\infty} = \{\epsilon, \$, \$\$, \$\$\$, \$\$\$, \ldots\}$ becomes an infinite PD set by similar logic to the $\{a^n b^n\}$ example. So the most liberal form of the game gives no longer a regular language.]