
CSE491/596 Lecture Mon. 9/18/23 Regular and Nonregular Languages

Preamble Q&A. A fine point about "regexp matrices":
Suppose we eliminate state 3 from the "clockwise on , counter on " 3-state DFA:a b

 a b

b a
a b

... T 2, 2 = T 2, 2 + T 2, 3 T 3, 3 T 3, 2 = 𝜖? ∅? + ab.[]new []old [] []* []

Note: regardless of whether wre say or T 3, 3 = 𝜖[]* T 3, 3 = ∅[] T 3, 3 = 𝜖[]

Does it matter whether we use or before the sing in the new ? 𝜖 ∅ + T 2, 2[]

In an immediate sense, yes---those expressions are not equivalent.
But the key point is that in any final answer, will be starred. AndT 2, 2[]

. So it will make no difference in the end.𝜖 + ba = ∅ + ba = ba()* ()* ()*

As it happened, the lecture took over 20 minutes of questions. Hence the coverage stopped
short of the Myhill-Nerode Theorem.

Given a DFA , let us use the notation the state that is in after M = Q, 𝛴, 𝛿, s, F() 𝛿 p, x = *() q M

processing from state . Note thatx p

,x ∈ L ⟺ 𝛿 s, x ∈ F*()

where , soL = L M()

,x ∉ L ⟺ 𝛿 s, x ∉ F*()

which is the same as writing

 x ∈ ⟺ 𝛿 s, x ∈ .L *() F = Q ⧵ FF

The upshot is that the DFA gives . This trick of complementing M' = Q, 𝛴, 𝛿, s, F L M' = () L

accepting and nonaccepting states does not, however, work for a general NFA. For example, if you try
this on the NFAs given for the languages of binary strings whose th bit from the end is a 1, then Nk Lk k

the new machine has an accepting loop at the start state on both 0 and 1 and so accepts every string,
not just those in the complement of . [I spent some time showing this from the picture of in the Lk Nk

previous lecture.] But thanks to Kleene's Theorem, being able to do it for DFAs is enough to prove:

Theorem 1: The complement of a regular language is always regular. ☒

Immediately under representation by regular expressions, the class of regular languages is closed
under union, using . It is hence closed under intersection, by de Morgan's Law:𝛼 + 𝛽

A∩ B = ∼ ∪ .A B

Now suppose we have two DFAs and (note that M = Q , 𝛴, 𝛿 , s , F1 (1 1 1 1) M = Q , 𝛴, 𝛿 , s , F2 (2 2 2 2)

 is the same). Let and . Then let be any binary operation on sets, 𝛴 L = L M1 (1) L = L M2 (2) op

such as or but note also difference and symmetric difference∪ ∩ L ⧵ L1 2

,L △ L = L ⧵ L ∪ L ⧵ L = L ∪ L ⧵ L ∩ L1 2 (1 2) (2 1) (1 2) (1 2)

whose corresponding Boolean operation is XOR, which is sometimes written . Then we have:op' ⊕

 x ∈ L op1 L ⟺ x ∈ L op' x ∈ L ⟺ 𝛿 s , x ∈ F op' 𝛿 s , x ∈ F2 (1 2) *

1(1) 1
*
2(2) 2

When = AND, this is , .op' ⟺ (𝛿 s , x*
1(1) 𝛿 s , x ∈ F × F*

2(2)) 1 2

This means that if we define

 with and , M = Q , 𝛴, 𝛿 , s , F3 (3 3 3 3) Q = Q × Q3 1 2 s = s , s3 (1 2)

and define 𝛿 q , q , c = 𝛿 q , c , 𝛿 q , c ,3((1 2)) (1(1) 2(2))

and use , F = F × F3 1 2

then . L M = L M ∩ L M(3) (1) (2)

We can use this Cartesian product construction for the other Boolean operations . We just have op'

to be more careful about how we define the final states. The general definition is

.F = r , r : r ∈ F op' r ∈ F3 {(1 2) 1 1 2 2 }

Then . Thus we have shown the following theorem.L M = L M op L M(3) (1) (2)

Theorem 2: The class of regular languages is closed under all Boolean operations.

Actually, we already could have said this right after Theorem 1 about complements. This is because
OR is a native regular expression operation. OR and negation (form a complete set of logic ¬)

operations. For instance, by DeMorgan's laws.a AND b ≡ ¬(¬a OR ¬ b() ())

Philosophical Interlude: Suppose and are the two regular languages you want to combine. If L1 L2

what you're given are DFAs and for them ("for them" means and), M1 M2 L M = L(1) 1 L M = L(2) 2

then the combination can be quickly put together as above, and it doesn't matter what the operation M 3

is. But if you are originally given NFAs and , it is not so easy. Well, it is easy for union/OR if you N1 N2

only need an NFA : just join and in parallel with -arcs from a new start state as we saw in N3 N1 N2 𝜖

the NFA-to-regexp proof. For intersection/AND, hmmm....[Is there a way to make the Cartesian product
construction idea work directly on two NFAs? That might be a good small-group discussion topic.]
And if the operation is difference or symmetric difference---or just simply complement like on the
homework problem 3---there seems to be no way in general without first converting the NFAs to DFAs
so you can apply the Cartesian product idea. Maybe in particular cases there are shortcuts, but in this
course we emphasize geenral cases.

This all highlights a curious asymmetry between OR and AND. The former is a native regular
expression operation. We at least a philosophical analogy to parallel circuits in Kirchoff's Laws. There
does not, however, seem to be an electrical counterpart to AND. Even if you can do Cartesian product
on two NFAs to handle AND, the new NFA is quadratically bigger than the two given NFAs. This may
be more than analogy---it may be responsible for differences in cases where our brains find disjunctions
easier to think about than conjunctions. [The difference actually really comes out when we contrast
disjunctiive normal form, which means OR-of-ANDs, with conjunctive normal form, which is AND-of-
ORs. We will hit this when doing NP-completeness.]

