
CSE491/596 Lecture Mon. 9/19/22 Regular and Nonregular Languages

Given a DFA , let us use the notation the state that is in after M = Q,𝛴, 𝛿, s, F() 𝛿 p, x = *() q M

processing from state . We saw this as for the DFA in the NFA-to-DFA proof. Note thatx p 𝛥
*

,x ∈ L ⟺ 𝛿 s, x ∈ F*()

where , soL = L M()

,x ∉ L ⟺ 𝛿 s, x ∉ F*()

which is the same as writing

x ∈ ⟺ 𝛿 s, x ∈ .L *() F

The upshot is that the DFA gives . This trick of complementing M' = Q,𝛴, 𝛿, s, F L M' = () L

accepting and nonaccepting states does not, however, work for a general NFA. For example, if you try
this on the NFAs given for the languages of binary strings whose th bit from the end is a 1, then Nk Lk k

the new machine has an accepting loop at the start state on both 0 and 1 and so accepts every string,
not just those in the complement of . [I spent some time showing this from the picture of in the Lk Nk

previous lecture.] But thanks to Kleene's Theorem, being able to do it for DFAs is enough to prove:

Theorem 1: The complement of a regular language is always regular. ☒

Now suppose we have two DFAs and (note that M = Q ,𝛴, 𝛿 , s , F1 (1 1 1 1) M = Q ,𝛴, 𝛿 , s , F2 (2 2 2 2)

 is the same). Let and . Then let be any binary operation on sets, 𝛴 L = L M1 (1) L = L M2 (2) op

such as or but note also difference and symmetric difference∪ ∩ L ⧵ L1 2

,L △ L = L ⧵ L ∪ L ⧵ L = L ∪ L ⧵ L ∩ L1 2 (1 2) (2 1) (1 2) (1 2)

whose corresponding Boolean operation is XOR, which is sometimes written . Then we have:op' ⊕

 x ∈ L op1 L ⟺ x ∈ L op' x ∈ L ⟺ 𝛿 s , x ∈ F op' 𝛿 s , x ∈ F2 (1 2) *

1(1) 1
*
2(2) 2

When = AND, this is , .op' ⟺ (𝛿 s , x*
1(1) 𝛿 s , x ∈ F × F*

2(2)) 1 2

This means that if we define

 with and , M = Q ,𝛴, 𝛿 , s , F3 (3 3 3 3) Q = Q × Q3 1 2 s = s , s3 (1 2)

and define and use , 𝛿 q , q , c = 𝛿 q , c , 𝛿 q , c ,3((1 2)) (1(1) 2(2)) F = F × F3 1 2

then . L M = L M ∩ L M(3) (1) (2)

We can use this Cartesian product construction for the other Boolean operations . We just have op'

to be more careful about how we define the final states. The general definition is

.F = r , r : r ∈ F op' r ∈ F3 {(1 2) 1 1 2 2 }

Then . Thus we have shown the following theorem.L M = L M op L M(3) (1) (2)

Theorem 2: The class of regular languages is closed under all Boolean operations.

Actually, we already could have said this right after Theorem 1 about complements. This is because
OR is a native regular expression operation. OR and negation (form a complete set of logic ¬)

operations. For instance, by DeMorgan's laws.a AND b ≡ ¬(¬a OR ¬ b() ())

Philosophical Interlude: Suppose and are the two regular languages you want to combine. If L1 L2

what you're given are DFAs and for them ("for them" means and), M1 M2 L M = L(1) 1 L M = L(2) 2

then the combination can be quickly put together as above, and it doesn't matter what the M 3

operation is. But if you are originally given NFAs and , it is not so easy. Well, it is easy for N1 N2

union/OR if you only need an NFA : just join and in parallel with -arcs from a new start state N3 N1 N2 𝜖

as we saw in the NFA-to-regexp proof. For intersection/AND, hmmm....[Is there a way to make the
Cartesian product construction idea work directly on two NFAs? That might be a good small-group
discussion topic.] And if the operation is difference or symmetric difference there seems to be no way
in general without first converting the NFAs to DFAs so you can apply the Cartesian product idea.
Maybe in particular cases there are shortcuts, but in this course we emphasize general cases.

This all highlights a curious asymmetry between OR and AND. The former is a native regular
expression operation. We at least a philosophical analogy to parallel circuits in Kirchoff's Laws. There
does not, however, seem to be an electrical counterpart to AND. Even if you can do Cartesian product
on two NFAs to handle AND, the new NFA is quadratically bigger than the two given NFAs. This may
be more than analogy---it may be responsible for differences in cases where our brains find disjunctions
easier to think about than conjunctions. [The difference actually really comes out when we contrast
disjunctive normal form, which means OR-of-ANDs, with conjunctive normal form, which is AND-of-
ORs. We will hit this when doing NP-completeness.]

Myhill-Nerode Theorem [John Myhill, UB , Anil Nerode, Cornell]1987†

Given a DFA and two strings , suppose and both give M = Q,𝛴, 𝛿, s, F() x, y ∈ 𝛴*

𝛿 s, x*() 𝛿 s, y*()

the same state . Then for any further string , the computations on the strings and go q z ∈ 𝛴* xz yz

through the same states after . In particular, they end at the same state .q r

• If , then and , where .r ∈ F xz ∈ L yz ∈ L L = L M()

• If , then and r ∉ F xz ∉ L yz ∉ L.

• Either way, , for all .L xz = L yz() () z

Suppose, on the other hand, we have strings for which there exists a string such thatx, y z

.L xz ≠ L yz() ()

Then cannot process and to the same state. Moreover, this goes for any DFA such that M x y M

. In particular, every such DFA must at least have two states.L M = L()

Now let us build some definitions around these ideas. Given any language (not necessarily regular) L

and strings "over" the alphabet that is "over", define:x, y 𝛴 L

• and are -equivalent, written , if for all , .x y L x ∼ yL z ∈ 𝛴* L xz = L yz() ()

• and are distinctive for , written , if there exists s.t. .x y L x ≁ yL z ∈ 𝛴* L xz ≠ L yz() ()

Example: Then and give , even though neither L = w : #1 w is even . { () } x = 1101 y = 1011 x ∼ yL

 nor belong to . E.g. makes and both belong to , so x y L z = 01 xz = 110101 yz = 101101 L

. And with instead, both would be false.L xz = L yz = true() () z = 101

Lemma 1. The relation is an equivalence relation.∼ L

Proof: We need to show that it is

• Reflexive: is obvious.x ∼ xL

• Symmetric: indeed, immediately means the same as .y ∼ xL x ∼ yL

• Transitive: Suppose and . This means:w ∼ xL x ∼ yL

– for all , andv ∈ 𝛴* L wv = L xv() ()

– for all , .z ∈ 𝛴* L xz = L yz() ()

Because and range over the same span of strings, it follows thatv z

– for all , and .z ∈ 𝛴* L wz = L xz() () L xz = L yz() ()

Hence we get:
– for all , .z ∈ 𝛴* L wz = L yz() ()

So . w ∼ yL

This ends the proof. ☒

Any equivalence relation on a set such as partitions that set into disjoint equivalence classes. So 𝛴*

 is the same as saying and belong to different equivalence classes. If you make be the x ≁ yL x y E3

language where the number of 1s is a multiple of , you get 3 equivalence classes. And so on...] 3

S = 101, 100, 1011{ }

Now say that a set of strings is Pairwise Distinctive for if all of its strings belong to separate S L

equivalence classes under the relation . Other names we will use are "distinctive set" and "PD set" ∼ L

for . This is the same as saying:L

• for all , , there exists such that .x, y ∈ S x ≠ y z ∈ 𝛴* L xz ≠ L yz() ()

Thus we can re-state something we said above as:

Lemma 2. If has a PD set of size 2, then any DFA such that must process the two L S M L M = L ()

strings in to different states, so must have at least 2 states.S M

Note: " has" does not mean must be a subset of , it just means "has by association." Now we can L S L
take this logic further:

Lemma . If has a PD set of size , then any DFA such that must process the k L S k M L M = L () k

strings in to different states, so must have at least states.S M k

I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we have
a DFA with or fewer states such that . Then there must be (at least) two strings in M k- 1 L M = L ()

 that processes to the same state. This follows by the Pigeonhole Principle.S M

[tell story]
[finish proof]
Then explain why we get the infinite case:

Lemma If has a PD set of size , then any DFA such that must process the ∞. L S ∞ M L M = L ()

strings in to different states, so must have at least states...but then is not a finite automaton. S M ∞ M

So is not accepted by any finite automaton...which means is not a regular language. L L ☒

Myhill-Nerode Theorem, first half: If has an infinite PD set, then is not regular.L L

Example: . . Let any , L = a b : n ≥ 0n n 𝛴 = a, b{ } S = a : n ≥ 0 = a .n * x, y ∈ S

, be given. Then there are different numbers and such that and . Take x ≠ y i j x = ai y = aj

. Then , but , because . Thus . Thus z = bi xz = a b ∈ Li i yz = a b ∉ Lj i i ≠ j L xz ≠ L yz() ()

for all with , there exists such that . Thus is PD for . Since is x, y ∈ S x ≠ y z L xz ≠ L yz() () S L S

infinite, is not regular, by MNT. L ☒

[Then I drew a connection from this to the idea of playing the spears-and-dragons game when you can
save any number of spears. In the basic case where you can save at most 1 spear the DFA has 3
states, and these are mandated because is a PD set of size 3. In particular, even S = 𝜖, $, D{ }

though both and are strings in the language of the 1-spear game, they are distinctive x = 𝜖 y = $ L1

for because kills you in the former case (i.e.,) but you stay alive in L1 z = D xz = 𝜖D = D ∉ L1

the latter case (i.e.,). If you can save up to 2 spears, then are three distinctive yz = $D ∈ L1 𝜖, $, $

strings (plus to make a fourth). Well, if you can save unlimited spears, then D

becomes an infinite PD set by similar logic to the example. So the S = 𝜖, $, $, $$, … ∞ { } a bn n

most liberal form of the game gives no longer a regular language.]

