
CSE491/596  Lecture Mon. 9/19/22     Regular and Nonregular Languages
 
Given a DFA , let us use the notation the state  that  is in after M =  Q,𝛴, 𝛿, s, F( ) 𝛿 p, x  =  *( ) q M

processing  from state .  We saw this as  for the DFA in the NFA-to-DFA proof.  Note thatx p 𝛥
*

 
,x ∈  L ⟺  𝛿 s, x  ∈  F*( )

where , soL =  L M( )

,x ∉  L ⟺  𝛿 s, x  ∉  F*( )

which is the same as writing

x ∈   ⟺  𝛿 s, x  ∈  .L *( ) F

The upshot is that the DFA  gives .  This trick of complementing M' =  Q,𝛴, 𝛿, s, F L M'  =  ( ) L

accepting and nonaccepting states does not, however, work for a general NFA.  For example, if you try 
this on the NFAs  given for the languages  of binary strings whose th bit from the end is a 1, then Nk Lk k

the new machine has an accepting loop at the start state on both 0 and 1 and so accepts every string, 
not just those in the complement of .  [I spent some time showing this from the picture of  in the Lk Nk

previous lecture.]  But thanks to Kleene's Theorem, being able to do it for DFAs is enough to prove:
 
Theorem 1: The complement of a regular language is always regular.  ☒
 
Now suppose we have two DFAs  and  (note that M  =  Q ,𝛴, 𝛿 , s , F1 ( 1 1 1 1) M  =  Q ,𝛴, 𝛿 , s , F2 ( 2 2 2 2)

 is the same).  Let  and .  Then let  be any binary operation on sets, 𝛴 L  =  L M1 ( 1) L  =  L M2 ( 2) op

such as  or  but note also difference  and symmetric difference∪ ∩ L  ⧵  L1 2

 
,L  △  L  =  L  ⧵  L  ∪  L  ⧵  L  =  L  ∪  L  ⧵  L  ∩  L1 2 ( 1 2) ( 2 1) ( 1 2) ( 1 2)

 
whose corresponding Boolean operation  is XOR, which is sometimes written .  Then we have:op' ⊕

 
 x ∈  L  op1 L  ⟺  x ∈  L  op' x ∈  L  ⟺  𝛿 s , x  ∈  F  op' 𝛿 s , x  ∈  F2 ( 1 2) *

1( 1 ) 1
*
2( 2 ) 2

When  = AND, this is , .op' ⟺   (𝛿 s , x*
1( 1 ) 𝛿 s , x  ∈  F  ×  F*

2( 2 )) 1 2

This means that if we define 
 

 with  and , M  =  Q ,𝛴, 𝛿 , s , F3 ( 3 3 3 3) Q  =  Q  ×  Q3 1 2 s  =  s , s3 ( 1 2)

 
and define               and use , 𝛿 q , q ,  c  =  𝛿 q , c ,  𝛿 q , c ,3(( 1 2) ) ( 1( 1 ) 2( 2 )) F  =  F  ×  F3 1 2

 
then .  L M  =  L M  ∩  L M( 3) ( 1) ( 2)

 
We can use this Cartesian product construction for the other Boolean operations .  We just have op'

to be more careful about how we define the final states.  The general definition is
 

 

 



.F  =  r , r  :  r  ∈  F  op' r  ∈  F3 {( 1 2) 1 1 2 2 }

 
Then .  Thus we have shown the following theorem.L M  =  L M  op L M( 3) ( 1) ( 2)

 
Theorem 2: The class of regular languages is closed under all Boolean operations.
 
Actually, we already could have said this right after Theorem 1 about complements.  This is because 
OR is a native regular expression operation.  OR and negation (  form a complete set of logic ¬)

operations.  For instance,   by DeMorgan's laws.a AND b ≡  ¬( ¬a  OR ¬ b( ) ( ))

 
Philosophical Interlude: Suppose  and  are the two regular languages you want to combine.  If L1 L2

what you're given are DFAs  and  for them ("for them" means  and ), M1 M2 L M  = L( 1) 1 L M  =  L( 2) 2

then the combination can be quickly put together as above, and it doesn't matter what the M  3

operation is.  But if you are originally given NFAs  and , it is not so easy.  Well, it is easy for N1 N2

union/OR if you only need an NFA : just join  and  in parallel with -arcs from a new start state N3 N1 N2 𝜖

as we saw in the NFA-to-regexp proof.  For intersection/AND, hmmm....[Is there a way to make the 
Cartesian product construction idea work directly on two NFAs?  That might be a good small-group 
discussion topic.]   And if the operation is difference or symmetric difference there seems to be no way 
in general without first converting the NFAs to DFAs so you can apply the Cartesian product idea.  
Maybe in particular cases there are shortcuts, but in this course we emphasize general cases.
 
This all highlights a curious asymmetry between OR and AND.  The former is a native regular 
expression operation.  We at least a philosophical analogy to parallel circuits in Kirchoff's Laws.  There 
does not, however, seem to be an electrical counterpart to AND.  Even if you can do Cartesian product 
on two NFAs to handle AND, the new NFA is quadratically bigger than the two given NFAs.  This may 
be more than analogy---it may be responsible for differences in cases where our brains find disjunctions 
easier to think about than conjunctions.  [The difference actually really comes out when we contrast 
disjunctive normal form, which means OR-of-ANDs, with conjunctive normal form, which is AND-of-
ORs.  We will hit this when doing NP-completeness.]
 
 
Myhill-Nerode Theorem [John Myhill, UB , Anil Nerode, Cornell]1987†

 
Given a DFA  and two strings , suppose  and  both give M =  Q,𝛴, 𝛿, s, F( ) x, y ∈  𝛴*

𝛿 s, x*( ) 𝛿 s, y*( )

the same state .  Then for any further string , the computations on the strings  and  go q z ∈  𝛴* xz yz

through the same states after .  In particular, they end at the same state .q r
 

• If , then  and , where .r ∈  F xz ∈  L yz ∈  L L =  L M( )

• If , then  and r ∉  F xz ∉  L yz ∉  L.

• Either way, , for all .L xz  =  L yz( ) ( ) z
 
Suppose, on the other hand, we have strings  for which there exists a string  such thatx, y z

 

 



 
.L xz  ≠  L yz( ) ( )

 
Then  cannot process  and  to the same state.  Moreover, this goes for any DFA  such that M x y M

.  In particular, every such DFA must at least have two states.L M  =  L( )

 
Now let us build some definitions around these ideas.  Given any language  (not necessarily regular) L

and strings  "over" the alphabet  that  is "over", define:x, y 𝛴 L
 

•  and  are -equivalent, written , if for all , .x y L x ∼  yL z ∈  𝛴* L xz  =  L yz( ) ( )

•  and  are distinctive for , written , if there exists  s.t. .x y L x ≁  yL z ∈  𝛴* L xz  ≠  L yz( ) ( )

 
Example: Then  and  give , even though neither L =  w :  #1 w  is even .   { ( ) } x = 1101 y = 1011 x ∼  yL

 nor  belong to .  E.g.  makes  and  both belong to , so x y L z =  01 xz = 110101 yz = 101101 L

.  And with  instead, both would be false.L xz = L yz = true( ) ( ) z = 101

 
Lemma 1. The relation  is an equivalence relation.∼ L

 
Proof: We need to show that it is

• Reflexive:  is obvious.x ∼  xL

• Symmetric: indeed,  immediately means the same as .y ∼  xL x ∼  yL

• Transitive: Suppose  and .  This means:w ∼  xL x ∼  yL

– for all ,  andv ∈  𝛴* L wv  =  L xv( ) ( )

– for all , .z ∈  𝛴* L xz  =  L yz( ) ( )

Because  and  range over the same span of strings, it follows thatv z

– for all ,  and .z ∈  𝛴* L wz  =  L xz( ) ( ) L xz  =  L yz( ) ( )

Hence we get:
– for all , .z ∈  𝛴* L wz  =  L yz( ) ( )

So .   w ∼  yL

This ends the proof.  ☒
 
Any equivalence relation on a set such as  partitions that set into disjoint equivalence classes.  So 𝛴*

 is the same as saying  and  belong to different equivalence classes.  If you make  be the x ≁  yL x y E3

language where the number of 1s is a multiple of , you get 3 equivalence classes.  And so on...]   3

S =  101,  100,  1011{ }

 
Now say that a set  of strings is Pairwise Distinctive for  if all of its strings belong to separate S L

equivalence classes under the relation .  Other names we will use are "distinctive set" and "PD set" ∼ L

for .  This is the same as saying:L
 

• for all , , there exists  such that .x, y ∈  S x ≠  y z ∈  𝛴* L xz  ≠  L yz( ) ( )

 

 



 
Thus we can re-state something we said above as:
 
Lemma 2. If  has a PD set  of size 2, then any DFA  such that must process the two L S M L M  =  L ( )

strings in  to different states, so  must have at least 2 states.S M
 
Note: "  has" does not mean  must be a subset of , it just means "has by association."  Now we can L S L
take this logic further:
 
Lemma . If  has a PD set  of size , then any DFA  such that  must process the  k L S k M L M  =  L ( ) k

strings in  to different states, so  must have at least  states.S M k
 
I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we have 
a DFA  with  or fewer states such that .  Then there must be (at least) two strings in M k- 1 L M  =  L ( )

 that  processes to the same state.  This follows by the Pigeonhole Principle.S M
 
[tell story]
[finish proof]
Then explain why we get the infinite case:
 
Lemma  If  has a PD set  of size , then any DFA  such that  must process the ∞. L S ∞ M L M  =  L ( )

strings in  to different states, so  must have at least  states...but then  is not a finite automaton.  S M ∞ M

So  is not accepted by any finite automaton...which means  is not a regular language.  L L ☒
 
Myhill-Nerode Theorem, first half: If  has an infinite PD set, then   is not regular.L L
 

Example: .  .    Let any , L =  a  b  :  n ≥  0n n 𝛴 =  a, b{ } S =  a :  n ≥  0  =  a .n * x, y ∈  S

, be given.  Then there are different numbers  and  such that  and .  Take x ≠  y i j x =  ai y =  aj

.  Then , but , because .  Thus .  Thus z =  bi xz =  a b  ∈  Li i yz =  a  b  ∉  Lj i i ≠  j L xz  ≠  L yz( ) ( )

for all  with , there exists  such that .  Thus  is PD for .  Since  is x, y ∈  S x ≠  y z L xz  ≠  L yz( ) ( ) S L S 

infinite,  is not regular, by MNT.  L ☒
 
[Then I drew a connection from this to the idea of playing the spears-and-dragons game when you can 
save any number of spears.  In the basic case where you can save at most 1 spear the DFA has 3 
states, and these are mandated because  is a PD set of size 3.  In particular, even S =  𝜖, $, D{ }

though both  and  are strings in the language  of the 1-spear game, they are distinctive x =  𝜖 y =  $ L1

for  because  kills you in the former case (i.e., ) but you stay alive in L1 z =  D xz =  𝜖D =  D ∉  L1

the latter case (i.e., ).  If you can save up to 2 spears, then  are three distinctive yz =  $D ∈  L1 𝜖, $, $

strings (plus  to make a fourth).  Well, if you can save unlimited spears, then D

becomes an infinite PD set by similar logic to the  example.  So the S  =  𝜖, $, $, $$, …  ∞ { } a  bn n

most liberal form of the game gives no longer a regular language.]

 

 


