Theorem 1: The complement of a regular language is always regular. ✡

I will write the complement of a regular language \(A \) as \(\widetilde{A} \) or as \(\sim A \). The idea is that given a DFA \(M = (Q, \Sigma, \delta, s, F) \) such that \(L(M) = A \), we can get \(M' = (Q', \Sigma, \delta', s', F') \) such that \(L(M') = \widetilde{A} \) by taking \(Q' = Q, s' = s, \delta' = \delta \), but \(F' = Q \setminus F \). Then for all \(x \in \Sigma^* \),

\[
x \in \widetilde{A} \iff x \notin A \iff x \notin L(M) \iff \delta'(s, x) \notin F \iff \delta'(s, x) \in F' \iff x \in L(M').
\]

Thus \(L(M') = \widetilde{A} \). Here \(\delta' \) is the extended transition function from \(Q \times \Sigma^* \) to \(Q \) such that \(\delta'(q, y) = r \) such that \(M \) can process \(y \) from \(q \) to \(r \). Note that this is only valid in a DFA. The whole idea of switching accepting and rejecting states does not generally work to complement an NFA (nor a GNFA).

Now suppose we have two DFAs \(M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1) \) and \(M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2) \) (note that \(\Sigma \) is the same). Let \(L_1 = L(M_1) \) and \(L_2 = L(M_2) \). Then let \(\text{op} \) be any binary operation on sets, such as \(\cup \) or \(\cap \) but note also difference \(L_1 \setminus L_2 \) and symmetric difference

\[
L_1 \triangle L_2 = (L_1 \setminus L_2) \cup (L_2 \setminus L_1) = (L_1 \cup L_2) \setminus (L_1 \cap L_2),
\]

whose corresponding Boolean operation \(\text{op}' \) is XOR, which is sometimes written \(\oplus \). Then we have:

\[
x \in L_1 \text{ op } L_2 \iff (x \in L_1 \text{ op}' x \in L_2) \iff (\delta_1'(s_1, x) \in F_1) \text{ op}' (\delta_2'(s_2, x) \in F_2)
\]

When \(\text{op}' = \text{AND} \), this is \(\iff (\delta_1'(s_1, x), \delta_2'(s_2, x)) \in F_1 \times F_2 \).

This means that if we define

\[
M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3) \text{ with } Q_3 = Q_1 \times Q_2 \text{ and } s_3 = (s_1, s_2),
\]

and define \(\delta_3((q_1, q_2), c) = (\delta_1(q_1, c), \delta_2(q_2, c)) \),

and use \(F_3 = F_1 \times F_2 \),

then \(L(M_3) = L(M_1) \cap L(M_2) \).

We can use this Cartesian product construction for the other Boolean operations \(\text{op}' \). We just have to be more careful about how we define the final states. The general definition is

\[
F_3 = \{(r_1, r_2) : r_1 \in F_1 \text{ op}' r_2 \in F_2\}.
\]
Then \(L(M_3) = L(M_1) \cup L(M_2) \). Thus we have shown the following theorem.

Theorem 2: The class of regular languages is closed under all Boolean operations.

Actually, we already could have said this right after Theorem 1 about complements. This is because OR is a native regular expression operation. OR and negation (¬) form a complete set of logic operations. For instance, \(a \ AND \ b \equiv \neg((\neg a) \ OR \ (\neg b)) \) by DeMorgan’s laws.

The Myhill-Nerode Relation

Given a DFA \(M = (Q, \Sigma, \delta, s, F) \) and two strings \(x, y \in \Sigma^* \), suppose \(\delta^*(s, x) \) and \(\delta^*(s, y) \) both give the same state \(q \). Then for any further string \(z \in \Sigma^* \), the computations on the strings \(xz \) and \(yz \) go through the same states after \(q \). In particular, they end at the same state \(r \).

- If \(r \in F \), then \(xz \in L \) and \(yz \in L \), where \(L = L(M) \).
- If \(r \notin F \), then \(xz \notin L \) and \(yz \notin L \).
- Either way, \(L(xz) = L(yz) \), for all \(z \).

Suppose, on the other hand, we have strings \(x, y \) for which there exists a string \(z \) such that

\[
L(xz) \neq L(yz).
\]

Then \(M \) cannot process \(x \) and \(y \) to the same state. Moreover, this goes for any DFA \(M \) such that \(L(M) = L \). In particular, every such DFA must at least have two states.

Now let us build some definitions around these ideas. Given any language \(L \) (not necessarily regular) and strings \(x, y \) "over" the alphabet \(\Sigma \) that \(L \) is "over", define:

- \(x \) and \(y \) are **L-equivalent**, written \(x \sim_L y \), if for all \(z \in \Sigma^* \), \(L(xz) = L(yz) \).
- \(x \) and \(y \) are **distinctive for \(L \)**, written \(x \not\sim_L y \), if there exists \(z \in \Sigma^* \) s.t. \(L(xz) \neq L(yz) \).

Lemma 1. The relation \(\sim_L \) is an equivalence relation.

Proof: We need to show that it is

- Reflexive: \(x \sim_L x \) is obvious.
- Symmetric: indeed, \(y \sim_L x \) immediately means the same as \(x \sim_L y \).
- Transitive: Suppose \(w \sim_L x \) and \(x \sim_L y \). This means:
 - for all \(v \in \Sigma^* \), \(L(wv) = L(xv) \) and
 - for all \(z \in \Sigma^* \), \(L(xz) = L(yz) \).
Because \(v \) and \(z \) range over the same span of strings, it follows that
- for all \(z \in \Sigma^* \), \(L(wz) = L(xz) \) and \(L(xz) = L(yz) \).
Hence we get:
- for all \(z \in \Sigma^* \), \(L(wz) = L(yz) \).
So \(w \sim_L y \).
This ends the proof.

Any equivalence relation on a set such as \(\Sigma^* \) partitions that set into disjoint equivalence classes. So \(x \sim_L y \) is the same as saying \(x \) and \(y \) belong to different equivalence classes. [I intended to give an example but skipped it after the initial loss of time: Start with the language \(E \) of strings having an even number of 1s. Then the relation \(\sim_E \) has exactly two equivalence classes: one for an even number of 1s, the other for odd. Now if you make \(E_3 \) be the language where the number of 1s is a multiple of 3, you get 3 equivalence classes. And so on...]

Logic of the Myhill-Nerode Theorem

Now say that a set \(S \) of strings is **Pairwise Distinctive for \(L \)** if all of its strings belong to separate equivalence classes under the relation \(\sim_L \). Other names we will use are "distinctive set" and "PD set" for \(L \). This is the same as saying:

- for all \(x, y \in S, x \neq y \), there exists \(z \in \Sigma^* \) such that \(L(xz) \neq L(yz) \).
Thus we can re-state something we said above as:

Lemma 2. If \(L \) has a PD set \(S \) of size 2, then any DFA \(M \) such that \(L(M) = L \) must process the two strings in \(S \) to different states, so \(M \) must have at least 2 states.

Note: "\(L \) has" does not mean \(S \) must be a subset of \(L \), it just means "has by association." Now we can take this logic further:

Lemma \(k \). If \(L \) has a PD set \(S \) of size \(k \), then any DFA \(M \) such that \(L(M) = L \) must process the \(k \) strings in \(S \) to different states, so \(M \) must have at least \(k \) states.

I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we have a DFA \(M \) with \(k - 1 \) or fewer states such that \(L(M) = L \). Then there must be (at least) two strings in \(S \) that \(M \) processes to the same state. This follows by the **Pigeonhole Principle**. [In this lecture I skipped over the story, but see this recent GLL blog post.]

Then explain why we get the infinite case:
Lemma ∞. If L has a PD set S of size ∞, then any DFA M such that $L(M) = L$ must process the strings in S to different states, so M must have at least ∞ states...but then M is not a finite automaton. So L is not accepted by any finite automaton...which means L is not a regular language. ☒

Myhill-Nerode Theorem, first half: If L has an infinite PD set, then L is not regular.

Example: $L = \{a^n b^n : n \geq 0\}$. $\Sigma = \{a, b\}$. $S = \{a^n : n \geq 0\} = a^*$. Let any $x, y \in S$, $x \neq y$, be given. Then there are different numbers i and j such that $x = a^i$ and $y = a^j$. Take $z = b^i$. Then $xz = a^i b^i \in L$, but $yz = a^j b^i \notin L$, because $i \neq j$. Thus $L(xz) \neq L(yz)$. Thus for all $x, y \in S$ with $x \neq y$, there exists z such that $L(xz) \neq L(yz)$. Thus S is PD for L. Since S is infinite, L is not regular, by MNT. ☒

[I finished by drawing a connection from this to the idea of playing the spears-and-dragons game when you can save any number of spears. In the basic case where you can save at most 1 spear the DFA has 3 states, and these are mandated because $S = \{\epsilon, $, $D\}$ is a PD set of size 3. In particular, even though both $x = \epsilon$ and $y =$ are strings in the language L_1 of the 1-spear game, they are distinctive for L_1 because $z = D$ kills you in the former case (i.e., $xz = \epsilon D = D \notin L_1$) but you stay alive in the latter case (i.e., $yz = $$ \in L_1$). If you can save up to 2 spears, then ϵ, $,$, $ are three distinctive strings (plus D to make a fourth). Well, if you can save unlimited spears, then $S_\infty = \{\epsilon, $, $,$, $\}$ becomes an infinite PD set by similar logic to the $a^n b^n$ example. So the most liberal form of the game gives no longer a regular language. The next lecture will pick up from here (minus the note at top).]