CSE491/596 Wed. 9/20/23: Non-Regular Languages

Rather than the "Pumping Lemma", we will employ the Myhill-Nerode Theorem (MNT) to prove non-regularity of certain languages. Although it was proved in Chicago in 1957-58 where John Myhill and Anil Nerode were students, we can claim it as Western NY heritage: Myhill was a professor at UB until his death in 1987, and Anil Nerode still teaches at Cornell past age 90(!) Nerode was my supervisor when I had a postdoc at Cornell.

Building up to the Proof

Given a DFA \(M = (Q, \Sigma, \delta, s, F) \) and two strings \(x, y \in \Sigma^* \), suppose \(\delta^*(s, x) \) and \(\delta^*(s, y) \) both give the same state \(q \). Then for any further string \(z \in \Sigma^* \), the computations on the strings \(xz \) and \(yz \) go through the same states after \(q \). In particular, they end at the same state \(r \).

- If \(r \in F \), then \(xz \in L \) and \(yz \in L \), where \(L = L(M) \).
- If \(r \notin F \), then \(xz \notin L \) and \(yz \notin L \).
- Either way, \(L(xz) = L(yz) \), for all \(z \).

Suppose, on the other hand, we have strings \(x, y \) for which there exists a string \(z \) such that

\[L(xz) \neq L(yz). \]

Then \(M \) cannot process \(x \) and \(y \) to the same state. Moreover, this goes for any DFA \(M \) such that \(L(M) = L \). In particular, every such DFA must at least have two states.

Now let us build some definitions around these ideas. Given any language \(L \) (not necessarily regular) and strings \(x, y \) "over" the alphabet \(\Sigma \) that \(L \) is "over", define:

- \(x \) and \(y \) are \(L \)-equivalent, written \(x \sim_L y \), if for all \(z \in \Sigma^* \), \(L(xz) = L(yz) \).
- \(x \) and \(y \) are distinctive for \(L \), written \(x \prec_L y \), if there exists \(z \in \Sigma^* \) s.t. \(L(xz) \neq L(yz) \).

Lemma 1. The relation \(\sim_L \) is an equivalence relation.

Proof: We need to show that it is
- Reflexive: \(x \sim_L x \) is obvious.
- Symmetric: indeed, \(y \sim_L x \) immediately means the same as \(x \sim_L y \).
- Transitive: Suppose \(w \sim_L x \) and \(x \sim_L y \). This means:
 - for all \(v \in \Sigma^* \), \(L(wv) = L(xv) \) and
 - for all \(z \in \Sigma^* \), \(L(xz) = L(yz) \).

Because \(v \) and \(z \) range over the same span of strings, it follows that
 - for all \(z \in \Sigma^* \), \(L(wz) = L(xz) \) and \(L(xz) = L(yz) \).
Hence we get:

- for all \(z \in \Sigma^* \), \(L(wz) = L(yz) \).

So \(w \sim_L y \).

This ends the proof. \(\Box \)

Any equivalence relation on a set such as \(\Sigma^* \) partitions that set into disjoint equivalence classes. So \(x \not\sim_L y \) is the same as saying \(x \) and \(y \) belong to different equivalence classes.

Now say that a set \(S \) of strings is **Pairwise Distinctive for** \(L \) if all of its strings belong to separate equivalence classes under the relation \(\sim_L \). Other names we will use are "distinctive set" and "PD set" for \(L \). This is the same as saying:

- for all \(x, y \in S \), \(x \neq y \), there exists \(z \in \Sigma^* \) such that \(L(xz) \neq L(yz) \).

Thus we can re-state something we said above as:

Lemma 2. If \(L \) has a PD set \(S \) of size 2, then any DFA \(M \) such that \(L(M) = L \) must process the two strings in \(S \) to different states, so \(M \) must have at least 2 states.

Note: "\(L \) has" does not mean \(S \) must be a subset of \(L \), it just means "has by association." Now we can take this logic further:

Lemma \(k \). If \(L \) has a PD set \(S \) of size \(k \), then any DFA \(M \) such that \(L(M) = L \) must process the \(k \) strings in \(S \) to different states, so \(M \) must have at least \(k \) states.

I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we have a DFA \(M \) with \(k - 1 \) or fewer states such that \(L(M) = L \). Then there must be (at least) two strings in \(S \) that \(M \) processes to the same state. This follows by the **Pigeonhole Principle**. [story from GLL blog]

Lemma \(\infty \). If \(L \) has a PD set \(S \) of size \(\infty \), then any DFA \(M \) such that \(L(M) = L \) must process the strings in \(S \) to different states, so \(M \) must have at least \(\infty \) states...but then \(M \) is not a finite automaton. So \(L \) is not accepted by any finite automaton...which means \(L \) is not a regular language. \(\Box \)

Myhill-Nerode Theorem, first half: If \(L \) has an infinite PD set, then \(L \) is not regular.

Example 1: \(L = \{ a^n b^n : n \geq 0 \} \). \(\Sigma = \{ a, b \} \). \(S = \{ a^n : n \geq 0 \} = a^* \). Let any \(x, y \in S \), \(x \neq y \), be given. Then there are different numbers \(i \) and \(j \) such that \(x = a^i \) and \(y = a^j \). Take \(z = b^i \). Then \(xz = a^i b^i \in L \), but \(yz = a^j b^i \notin L \), because \(i \neq j \). Thus \(L(xz) \neq L(yz) \). Thus for all \(x, y \in S \) with \(x \neq y \), there exists \(z \) such that \(L(xz) \neq L(yz) \). Thus \(S \) is PD for \(L \). Since \(S \) is infinite, \(L \) is not regular, by MNT. \(\Box \)
We have proved only one direction of the Myhill-Nerode Theorem: \(L \) has an infinite PD set \(\iff \) \(L \) is nonregular, but this is the direction to apply for nonregularity proofs. Those proofs can all be made to follow a "script":

Take \(S = \ldots \). [Observe \(S \) is infinite---this is usually immediately clear.]

Let any \(x, y \in S \ (x \neq y) \) be given. Then we can write \(x = \ldots \) and \(y = \ldots \) where \(\ldots \) [and without loss of generality, \(\ldots \)].

Take \(z = \ldots \).

Then \(L(xz) \neq L(yz) \) because \(\ldots \).

Because \(x, y \) are an arbitrary pair of strings in \(S \), this shows that \(S \) is PD for \(L \), and since \(S \) is infinite, it follows that \(L \) is nonregular by the Myhill-Nerode Theorem.

I have colored the words take and let...be given separately to show how they express the logical quantifiers in the formal statement of this direction of MNT:

If there exists an infinite set \(S \) such that for all distinct \(x, y \in S \) there exists \(z \in \Sigma^* \) such that \(L(xz) \neq L(yz) \), then \(L \) is nonregular.

The difference is that you have control of choices in the existential parts, but in the "for-all" parts you have to be prepared for all possibilities. There is a habit to use "let" in both situations, but this can be confusing. [Give humorous story about how both "let" and "any" are self-contradictory words in English, but they are OK together with "...be given."] Now let's re-do Example 1 with the script:

Example 1. \(L = \{a^n b^n : n \geq 0\} \).

Take \(S = \ldots a^* \ldots \). [Observe \(S \) is infinite---this is usually immediately clear.]

Let any \(x, y \in S \ (x \neq y) \) be given. Then we can write \(x = \ldots a^i \ldots \) and \(y = \ldots a^j \ldots \) where \(\ldots i \neq j \) (and it is understood that \(i, j \geq 0 \)) [and without loss of generality, \(\ldots \)].

Take \(z = \ldots b^i \ldots \).

Then \(L(xz) \neq L(yz) \) because \(\ldots xz = a^i b^i \) which is in \(L \) since the counts are equal, but \(yz = a^j b^i \) which is not in \(L \) because \(j \) is different from \(i \).

Because \(x, y \) are an arbitrary pair of strings in \(S \), this shows that \(S \) is PD for \(L \), and since \(S \) is infinite, it follows that \(L \) is nonregular by the Myhill-Nerode Theorem.
Thus to prove a given L nonregular we have to "act out" the proof---and the above is our script. The first example also illustrates the optional "w.l.o.g." clause.

Example 2. $L = \left\{ x \in \{s, d\}^* : \#s(x) \geq \#d(x) \right\}$.

Take $S = _{s^*}$. Clearly S is infinite.

Let any $x, y \in S (x \neq y)$ be given. Then we can write $x = _{s^i}$ and $y = _{s^j}$ where $i \neq j$ and wlog., $j < i$.

Take $z = _{d^i}$.

Then $L(xz) \neq L(yz)$ because $xz = s^i d^i \in L$. Whereas $yz = s^j d^i ...$ is not in L because wlog. $j < i$.

Because x, y are an arbitrary pair of strings in S, this shows that S is PD for L, and since S is infinite, it follows that L is nonregular by the Myhill-Nerode Theorem.

Note that this L is not the same as the language of "spears-and-dragons with unlimited saving of spears" because e.g. the string "ds" belongs to this L despite the spear coming too late in the other. But the proof is exactly the same. The fun is that not only do these proofs become fairly automatic once you get comfortable with the script, they are often like re-usable code.

[Here and/or with reductions, I used to say for fun that this can be an exception to the university rule against recycling an old answer for a new assignment, even when it was your answer. I even used to sing a relevant section of the Tom Lehrer song "Lobachevsky" which you can find linked at https://gilkalai.wordpress.com/2020/08/29/to-cheer-you-up-in-difficult-times-11-immortal-songs-by-sabine-hossenfelder-and-by-tom-lehrer/. But an upsurge in academic integrity violations made this all stop being funny about 15 years ago...]