CSE491/596 Wed. 9/20/23: Non-Regular Languages

Rather than the "Pumping Lemma", we will employ the **Myhill-Nerode Theorem** (MNT) to prove nonregularity of certain languages. Although it was proved in Chicago in 1957-58 where John Myhill and Anil Nerode were students, we can claim it as Western NY heritage: Myhill was a professor at UB until his death in 1987, and Anil Nerode still teaches at Cornell past age 90(!) Nerode was my supervisor when I had a postdoc at Cornell.

Building up to the Proof

Given a DFA $M = (Q, \Sigma, \delta, s, F)$ and two strings $x, y \in \Sigma^*$, suppose $\delta^*(s, x)$ and $\delta^*(s, y)$ both give the same state q. Then for any further string $z \in \Sigma^*$, the computations on the strings xz and yz go through the same states after q. In particular, they end at the same state r.

- If $r \in F$, then $xz \in L$ and $yz \in L$, where L = L(M).
- If $r \notin F$, then $xz \notin L$ and $yz \notin L$.
- Either way, L(xz) = L(yz), for all z.

Suppose, on the other hand, we have strings x, y for which there exists a string z such that

$$L(xz) \neq L(yz).$$

Then *M* cannot process *x* and *y* to the same state. Moreover, this goes for *any* DFA *M* such that L(M) = L. In particular, every such DFA must at least *have* two states.

Now let us build some definitions around these ideas. Given any language L (not necessarily regular) and strings x, y "over" the alphabet Σ that L is "over", define:

- x and y are *L*-equivalent, written $x \sim L y$, if for all $z \in \Sigma^*$, L(xz) = L(yz).
- x and y are distinctive for L, written $x \not\sim_L y$, if there exists $z \in \Sigma^*$ s.t. $L(xz) \neq L(yz)$.

Lemma 1. The relation $\sim L$ is an equivalence relation.

Proof: We need to show that it is

- Reflexive: $x \sim L x$ is obvious.
- Symmetric: indeed, $y \sim L x$ immediately means the same as $x \sim L y$.
- Transitive: Suppose $w \sim L x$ and $x \sim L y$. This means:
 - for all $v \in \Sigma^*$, L(wv) = L(xv) and
 - for all $z \in \Sigma^*$, L(xz) = L(yz).

Because v and z range over the same span of strings, it *follows* that

- for all $z \in \Sigma^*$, L(wz) = L(xz) and L(xz) = L(yz).

Hence we get:
- for all
$$z \in \Sigma^*$$
, $L(wz) = L(yz)$.
So $w \sim _L y$.
This ends the proof. \boxtimes

Any equivalence relation on a set such as Σ^* partitions that set into disjoint *equivalence classes*. So $x \not\sim_L y$ is the same as saying x and y belong to different equivalence classes.

Now say that a set *S* of strings is *Pairwise Distinctive for L* if all of its strings belong to separate equivalence classes under the relation \sim_L . Other names we will use are "distinctive set" and "PD set" for *L*. This is the same as saying:

• for all $x, y \in S, x \neq y$, there exists $z \in \Sigma^*$ such that $L(xz) \neq L(yz)$.

Thus we can re-state something we said above as:

Lemma 2. If *L* has a PD set *S* of size 2, then any DFA *M* such that L(M) = L must process the two strings in *S* to different states, so *M* must have at least 2 states.

Note: "L has" does not mean S must be a subset of L, it just means "has by association." Now we can take this logic further:

Lemma k. If L has a PD set S of size k, then any DFA M such that L(M) = L must process the k strings in S to different states, so M must have at least k states.

I've worded this to try to make it as "obvious" as possible, but actually it needs proof: Suppose we have a DFA M with k - 1 or fewer states such that L(M) = L. Then there must be (at least) two strings in S that M processes to the same state. This follows by the **Pigeonhole Principle**. [story from GLL blog]

Lemma ∞ . If *L* has a PD set *S* of size ∞ , then any DFA *M* such that L(M) = L must process the strings in *S* to different states, so *M* must have at least ∞ states...but then *M* is not a *finite* automaton. So *L* is not accepted by any finite automaton...which means *L* is not a regular language.

Myhill-Nerode Theorem, first half: If L has an infinite PD set, then L is not regular.

Example 1: $L = \{a^n b^n : n \ge 0\}$. $\Sigma = \{a, b\}$. $S = \{a^n : n \ge 0\} = a^*$. Let any $x, y \in S$, $x \ne y$, be given. Then there are different numbers i and j such that $x = a^i$ and $y = a^j$. Take $z = b^i$. Then $xz = a^i b^i \in L$, but $yz = a^j b^i \notin L$, because $i \ne j$. Thus $L(xz) \ne L(yz)$. Thus for all $x, y \in S$ with $x \ne y$, there exists z such that $L(xz) \ne L(yz)$. Thus S is PD for L. Since S is infinite, L is not regular, by MNT. \boxtimes

We have proved only one direction of the Myhill-Nerode Theorem: *L* has an infinite PD set $\implies L$ is nonregular, but this is the direction to apply for nonregularity proofs. Those proofs can all be made to follow a "script":

Take S = ______. [Observe S is infinite---this is usually immediately clear.]Let any $x, y \in S (x \neq y)$ be given. Then we can write x = ______ andy = ______ where _____ [and without loss of generality, _____].Take z = ______.Then $L(xz) \neq L(yz)$ because ______

Because x, y are an arbitrary pair of strings in S, this shows that S is PD for L, and since S is infinite, it follows that L is nonregular by the Myhill-Nerode Theorem.

I have colored the words **take** and **let...be given** separately to show how they express the logical quantifiers in the formal statement of this direction of MNT:

If there exists an infinite set *S* such that for all distinct $x, y \in S$ there exists $z \in \Sigma^*$ such that $L(xz) \neq L(yz)$, then *L* is nonregular.

The difference is that *you* have control of choices in the existential parts, but in the "for-all" parts you have to be prepared for all possibilities. There is a habit to use "let" in both situations, but this can be confusing. [Give humorous story about how both "let" and "any" are self-contradictory words in English, but they are OK together with "...be given."] Now let's re-do Example 1 with the script:

Example 1.
$$L = \{a^n b^n : n \ge 0\}.$$

Take $S = __a^*$ ____. [Observe *S* is infinite---this is usually immediately clear.] Let any $x, y \in S$ ($x \neq y$) be given. Then we can write $x = __a^i$ ____ and $y = __a^j$ ____ where $__i \neq j$ (and it is understood that $i, j \ge 0$)_____ [and without loss of generality, ____].

Take $z = _b^i _$.

Then $L(xz) \neq L(yz)$ because $xz = a^i b^i$ which is in L since the counts are equal, but $yz = a^j b^i$ which is not in L because j is different from i. Because x, y are an arbitrary pair of strings in S, this shows that S is PD for L, and since S is infinite, it follows that L is nonregular by the Myhill-Nerode Theorem. Thus to prove a given *L* nonregular we have to "act out" the proof---and the above is our script. The first example also illustrates the optional "w.l.o.g." clause.

Example 2.
$$L = \{x \in \{s, d\}^* : \#s(x) \ge \#d(x)\}.$$

Take $S = _s^*_$. Clearly *S* is infinite.

Let any $x, y \in S$ ($x \neq y$) be given. Then we can write $x = _s^i_$ and $y = _s^j_$ where $__i \neq j_$ and wlog., $__j < i_$. Take $z = _d^i_$.

Then $L(xz) \neq L(yz)$ because $xz = s^i d^i \in L_{-}$. Whereas $yz = s^j d^i$... is not in L because wlog. j < i.

Because x, y are an arbitrary pair of strings in S, this shows that S is PD for L, and since S is infinite, it follows that L is nonregular by the Myhill-Nerode Theorem.

Note that this L is not the same as the language of "spears-and-dragons with unlimited saving of spears" because e.g. the string "ds" belongs to this L despite the spear coming too late in the other. But the *proof* is exactly the same. The fun is that not only do these proofs become fairly automatic once you get comfortable with the script, they are often like re-usable code.

[Here and/or with *reductions*, I used to say for fun that this can be an exception to the university rule against recycling an old answer for a new assignment, even when it was your answer. I even used to sing a relevant section of the Tom Lehrer song "Lobachevsky" which you can find linked at https://gilkalai.wordpress.com/2020/08/29/to-cheer-you-up-in-difficult-times-11-immortal-songs-by-sabine-hossenfelder-and-by-tom-lehrer/. But an upsurge in academic integrity violations made this all stop being funny about 15 years ago...]