
CSE491/596 Lecture 9/22/23: Myhill-Nerode Theorem, continued

We pick up with more examples of the "proof script."

Example 3. , where means reversed, e.g., L = x ∈ a, b : x = x{ }* R xR x

. [What is ?] That is, is the language of strings that are abbab = babbaR
𝜖
R L

palindromes and has the standard name PAL.

Take __ __. Clearly is infinite. S = S

 Let any be given. Then we can write __ __ andx, y ∈ S x ≠ y () x =

 __ __ where ________ and .y = m

 Take __ __. z =

 Then because ___ butL xz ≠ L yz() () ∈ PAL

 which is not in PAL because and the single m ≠ n b

 prevents any other possible way of "parsing" as a palindrome___.yz

Because are an arbitrary pair of strings in , this shows that is PD for , and x, y S S L

since is infinite, it follows that is nonregular by the Myhill-Nerode Theorem.S L

We did not need the "wlog." provision this time---but you can always take it even if you
don't need it. We also could have started with and made the the first char S = a* b

in . Why did I put the "up front" in ? It is to emphasize its importance and help z b S
avoid a common mistake of forgetting it altogether. The mistake (in this case---it pops
up in others too) is to think that is not a palindrome whenever . That a ⋅ am n m ≠ n

may be true with your breakdown but there could be others. E.g. which a a = a a3 5 4 4

is now clearly a palindrome. Indeed, is always in PAL.am+n

Example 4. What does "balanced" mean? L = x ∈ , : x is balanced .{()}*

[Discuss if time allows, but this will be more important when we cover pushdown automata as a
special case of Turing machines.] This language is often called BAL. It is in fact
"isomorphic to" the language of the "unlimited spears" and dragons game when you
win only if you leave the dungeon with zero spears. E.g., if you are holding 5 spears,
you need 5 "closing dragons" to balance out. With this understood, we can re-use
the proof of Example 2.

The Full MNT

We have proved only one direction. The whole theorem says:

Theorem: A language is regular all PD sets for are finite.L ⟺ L

We've proved that if has an infinite PD set, then is not regular. This is the L L ⟹

direction, though it may sound like the reverse. It is the contrapositive of the ⟹

direction. To complete the equivalence, we need to prove the direction.⟸

Proof: All PD sets for are finite is the same as saying the equivalence relation L ∼ L

has only finitely many equivalence classes. Take to be the set of equivalence Q

classes. For any string (where is understood to be the alphabet that is x ∈ 𝛴*
𝛴 L

"over"), there is exactly one equivalence class to which it belongs. Note that is Rx R𝜖

an equivalence class, thus a member of , and it will serve as the start state of the Q s

DFA we are building. Next defineM

. F = R : x ∈ L{ x }

Note that even though may be infinite, can be finite because and can L F Rx Ry

coincide---indeed, will coincide whenever . Indeed, must be finite, because x ∼ yL F

 is a subset of which is finite by the premise of . Finally, we define by the F Q ⟸ 𝛿

rule

 .𝛿 R , c = R(x) xc

For this to be "well defined" we need to show that it depends only on the equivalence
class, not on any that happens to represent it. So suppose , i.e., that also x y ∼ xL y

belongs to , so that . We need to show that too. This Rx R = Ry x 𝛿 R , c = R(y) xc

follows if is the same as . And justifying this is left as a study guide. Then Ryc Rxc

 is a legal DFA. And because hits its accepting M = Q, 𝛴, 𝛿, s, F() L M = L() M

states exactly on the strings that belong to . Thus is regular. x L L ☒

Corollary: In the direction of MNT, the DFA you get not only has the least ⇐

possible number of states, it is unique. Hence, every regular language has a unique
minimum-size DFA. ☒

Putting a checkbox in the corollary statement signifies that we've already essentially
proved it. The notes by Debray prove instead that every DFA can be reduced to a
unique minimum one via the DFA minimization algorithm. The algorithm is interesting
for its own sake---it is IMHO the easiest example of "dynamic programming"---but for
us it is just a "skim". The reasoning of both halves of MNT helps us recognize
minimum-size DFA cases, even extreme ones.

Proposition: For each , the unique minimum DFA for k ≥ 1 L = 0 + 1 1 0 + 1k ()* ()k-1

has states.2k

Proof: Take . Then has size . We claim that is PD for : Let any S = 0, 1{ }k S 2k S Lk

, , be given. By , there is some position (let's number from 1) x, y ∈ S x ≠ y x ≠ y i

in which they differ. Take . Then and differ in position from the end, z = 0i-1 xz yz k

so . This proves the claim, so the consequence is that any DFA L xz ≠ L yzk() k() Mk

such that needs at least states. Well, we can build a correct of L M = L(k) k 2k Mk

that size by having one state for each possible combination of last bits read qw w k

(treating an initial small string like as if it had leading 0s) and defining 10 k - 2

. The final states are for those that begin with : since , 𝛿 q , c = q(bv) vc qw w 1 |w| = k

this is in the th position from the right. So is the unique minimum DFA for . 1 k Mk Lk ☒

Note that the NFA from an earlier lecture only needs states. Thus this also Nk k + 1
demonstrates cases where the NFA-to-DFA construction has an unavoidable
"exponential explosion." Furthermore, the regular expression for in the proposition Lk

statement (call it) needs only symbols, the log part for the bits in the rk 12 + klog2()

number . This is an exponential step down in size. The upshot is that NFAs can k - 1
sometimes be exponentially more succinct than DFAs, and regular expressions (with
numerical powering) can be even more succinct in some cases.

Using MNT For Design Hints (as time allows)

We can use this direction to help us understand regular languages and build ⟸

DFAs for them. Let's revisit the example is even . Then L = x ∈ 𝛴 : #0 x { * () }

 iff the numbers of s in and are both even or both odd. Hence the relation x ∼ yL 0 x y

 has just two equivalence classes. Here is the DFA:∼ L

Now let's try a trickier example by conjoining "even s" with another condition of not 0

having as a substring: 00

L = x : #0 x is even and x has no 00{ () }

[In regular expression terms, equals but set-L 1 01 0 1 ⧵ 0 + 1 00 0 + 1* *
*

* ()* ()*

minus is not a native regular operator so that doesn't help us even build an NFA, let ⧵

alone a DFA, to accept . So let's ignore this attempt and try using (1) to build a DFA L

 by "MNT-enlightened trial and error."] We know that , so the start state will M 𝜖 ∈ L

be accepting, and that and are both not in . Indeed, causes a "dead 0 00 L 00

condition" because no string beginning with can possibly belong to , so it should 00 L
go to a dead state. That gives us part of the machine:

How about the string ? It can still be a loop at the start state. At the left end of a 1

string it makes no difference to having a possible , so . But what about the 00 1 ∈ R𝜖

loop on which we had at the "odd" state? Can we still direct it back to that state? It 1

is equivalent to ask whether . To see why not, consider and 0 ∼ 01L x = 0

. Take . Then is not in but is indeed in , y = 01 z = 0 xz = 00 L yz = 010 L

because the helped us avoid a . For the same reason, , and clearly 1 00 01 ≁ 00L

 because is in and is not (technically, they are distinguished by 01 ≁ 𝜖 𝜖 L 01

). Thus is a PD set of size , and so we need a fourth z = 𝜖 S' = 𝜖, 0, 00, 01{ } 4

state to process it to. Now, what about that string ? It is in , but is it in ? 010 L R𝜖

It is not, but finding a string such that is not so fast. We need z L 𝜖 ⋅ z ≠ L 010 ⋅ z() ()

to activate the "no " condition by making begin with , but then we need another -00 z 0 0

even0s odd 0s

R𝜖 R0

0

1

0 1

S = 𝜖, 0{ }

is a PD set of size 2, and
no PD set can be bigger.

dead

0

0

even0s

S = 𝜖, 0, 00 { }

0, 1

odd 0s, last 0

so far.

1

0odd0
Is 𝜖 ∼ 1?L Yes

L = x : #0 x is even and x has no 00{ () }

(1)

--but not right away---to make . Thus is the shortest distinguishing z ∈ L z = 010
string. This gives us:

So we wound up needing 5 states. Is that enough? Well, can we complete the
machine with arcs from the "even s, last char " state? Clearly goes to , and 0 0 0 dead 1

must go to an accepting state. If can go to the start state, then we're done. Can it? 1

Yes---by similar reasoning to putting a loop on at the start state. So is done and 1 M

 is a largest possible PD set.S''

There is another kind of reasoning we could have done. is the of two languages L ∩

represented by the 2-state DFA above and the following simple 3-state DFA for the
"no substring 00" condition:

dead

0

0

even0s
1

S'' = 𝜖, 0, 00, 01, 010{ }

L 0 ⋅ 0 ≠ L 01 ⋅ 0() ()
1

odd#0s, no danger on 0

Is 01 ∼ 011?L

1

0, 1

0

odd 0s, last 0

Is 𝜖 ∼ 010?L Is L 0 ≠ L 010 ⋅ 0 ?() () no

Is L 010 ≠ L 010 ⋅ 010 ?() () yes: 010 is in L but not 010010.

0odd0

1odd00even0

0

to dead

1

?

0 0

0
1

1 dead

1

even0s

odd 0s

0

1

0

1

0, 1

Doing the Cartesian Product construction seems to suggest the final DFA will have
 states. But the operation is intersection, so the "dead" condition in the 2 × 3 = 6

upper DFA knocks-on to make the whole third column dead in the product machine.
Since you don't need two separate dead states, the number goes down to 5 after all.
It is a good exercise to carry out the construction and verify that you get the same 5-
state DFA as above.

[On tap Wednesday: Turing Machines.]

