
CSE491/596 Lecture Wed. 9/23/20 Myhill-Nerode Theorem and Regular LanguagesCSE491/596 Lecture Wed. 9/23/20 Myhill-Nerode Theorem and Regular Languages

The theorem was proved in 1958 by John Myhill and Anil Nerode while they were at the University ofThe theorem was proved in 1958 by John Myhill and Anil Nerode while they were at the University of
Chicago. Myhill joined the UB Math Department in 1966 and stayed until his death in 1987. NerodeChicago. Myhill joined the UB Math Department in 1966 and stayed until his death in 1987. Nerode
joined Cornell in 1959 and is still active---he is the longest serving professor there and directed thejoined Cornell in 1959 and is still active---he is the longest serving professor there and directed the
Cornell Mathematical Sciences Institute in the 1980s when I was fortunate to earn an MSI postdocCornell Mathematical Sciences Institute in the 1980s when I was fortunate to earn an MSI postdoc
there. I was hosted in the Computer Science Department by Juris Hartmanis. Here is a post yesterdaythere. I was hosted in the Computer Science Department by Juris Hartmanis. Here is a post yesterday
from Professor Nerode's Facebook stream:from Professor Nerode's Facebook stream:

We have proved only one direction. The whole theorem says:We have proved only one direction. The whole theorem says:

TheoremTheorem: A language : A language is regular is regular all PD sets for all PD sets for are finite. are finite.LL ⟺⟺ LL

We've proved that if We've proved that if has an infinite PD set, then has an infinite PD set, then is not regular. This is the is not regular. This is the direction, though it direction, though it LL LL ⟹⟹

may sound like the reverse. It is the contrapositive of the may sound like the reverse. It is the contrapositive of the direction. To complete the direction. To complete the ⟹⟹

equivalence, we need to prove the equivalence, we need to prove the direction.direction.⟸⟸

ProofProof: All PD sets for : All PD sets for are finite is the same as saying the equivalence relation are finite is the same as saying the equivalence relation has only finitely has only finitely LL ∼∼ LL

many equivalence classes. Take many equivalence classes. Take to be the set of equivalence classes. For any string to be the set of equivalence classes. For any string QQ x x ∈∈ 𝛴 𝛴**

(where (where is understood to be the alphabet that is understood to be the alphabet that is "over"), there is exactly one equivalence class is "over"), there is exactly one equivalence class to to 𝛴𝛴 LL RRxx

which it belongs. Note that which it belongs. Note that is an equivalence class, thus a member of is an equivalence class, thus a member of , and it will serve as the, and it will serve as the RR𝜖𝜖 QQ

start state start state of the DFA of the DFA we are building. Next define we are building. Next definess MM

.. F F == RR :: x x ∈∈ L L{{ xx }}

Note that even though Note that even though may be infinite, may be infinite, can be finite because can be finite because and and can coincide---indeed, will can coincide---indeed, will LL FF RRxx RRyy

coincide whenever coincide whenever . Indeed, . Indeed, must be finite, because must be finite, because is a subset of is a subset of which is finite by the which is finite by the x x ∼∼ y yLL FF FF QQ

premise of premise of . Finally, we define . Finally, we define by the rule by the rule⟸⟸ 𝛿𝛿

 . .𝛿𝛿 RR ,, cc == R R((xx)) xcxc

For this to be "well defined" we need to show that it depends only on the equivalence class, not on anyFor this to be "well defined" we need to show that it depends only on the equivalence class, not on any
 that happens to represent it. So suppose that happens to represent it. So suppose , i.e., that , i.e., that also belongs to also belongs to , so that , so that .. xx y y ∼∼ x xLL yy RRxx RR == R Ryy xx

We need to show that We need to show that too. This follows if too. This follows if is the same as is the same as . And justifying this is. And justifying this is 𝛿𝛿 RR ,, cc == R R((yy)) xcxc RRycyc RRxcxc

left as a study guide. Then left as a study guide. Then is a legal DFA. And is a legal DFA. And because because hits its hits its M M == QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(()) LL MM == L L(()) MM

accepting states exactly on the strings accepting states exactly on the strings that belong to that belong to . Thus . Thus is regular. is regular. xx LL LL ☒☒

We can use this We can use this direction to help us understand regular languages and build DFAs for them. Heredirection to help us understand regular languages and build DFAs for them. Here ⟸⟸

is a simple example with is a simple example with . Consider . Consider is evenis even . [Note: In the actual. [Note: In the actual 𝛴 𝛴 == 00,, 11{{ }} L L == x x ∈∈ 𝛴𝛴 :: #0 #0 xx {{ ** (()) }}

lecture, I quantified lecture, I quantified instead, but this works better with the example that followed.] Then instead, but this works better with the example that followed.] Then #1#1 xx(()) x x ∼∼ y yLL

iff the numbers of iff the numbers of s in s in and and are both even or both odd. Hence the relation are both even or both odd. Hence the relation has just two has just two 00 xx yy ∼∼ LL

equivalence classes.equivalence classes. The DFA The DFA is basically one we have already seen: is basically one we have already seen: MM

Now let's try a trickier example by conjoining "even Now let's try a trickier example by conjoining "even s" with another condition of not having s" with another condition of not having as a as a 00 0000

substring:substring:

L L == xx :: #0 #0 xx is even and x has no 00 is even and x has no 00{{ (()) }}

[In regular expression terms, [In regular expression terms, equals equals but set-minus but set-minus is not a is not a LL 11 0101 00 11 ⧵⧵ 00 ++ 11 0000 00 ++ 11** **
**

** (())** (())** ⧵⧵

native regular operator so that doesn't help us even build an NFA, let alone a DFA, to accept native regular operator so that doesn't help us even build an NFA, let alone a DFA, to accept . So let's. So let's LL

ignore this attempt and try using (1) to build a DFA ignore this attempt and try using (1) to build a DFA by "MNT-enlightened trial and error."] We know by "MNT-enlightened trial and error."] We know MM

that that , so the start state will be accepting, and that , so the start state will be accepting, and that and and are both not in are both not in . Indeed, . Indeed, causes causes 𝜖 𝜖 ∈∈ L L 00 0000 LL 0000

a "dead condition" because no string beginning with a "dead condition" because no string beginning with can possibly belong to can possibly belong to , so it should go to a, so it should go to a 0000 LL
dead state. That gives us part of the machine:dead state. That gives us part of the machine:

How about the string How about the string ? It can still be a loop at the start state. At the left end of a string it makes no? It can still be a loop at the start state. At the left end of a string it makes no 11

difference to having a possible difference to having a possible , so , so . But what about the loop on . But what about the loop on which we had at the which we had at the 0000 1 1 ∈∈ R R𝜖𝜖 11

"odd" state? Can we still direct it back to that state? It is equivalent to ask whether "odd" state? Can we still direct it back to that state? It is equivalent to ask whether . To see. To see 0 0 ∼∼ 01 01LL

why not, consider why not, consider and and . Take . Take . Then . Then is not in is not in but but is is x x == 0 0 y y == 01 01 z z == 0 0 xz xz == 00 00 LL yz yz == 010 010

even0seven0s odd 0sodd 0s

RR𝜖𝜖 RR00

00

11

00 11

S S == 𝜖𝜖,, 00{{ }}

is a PD set of size 2, andis a PD set of size 2, and
no PD set can be bigger.no PD set can be bigger.

deaddead

00

00

even0seven0s

S S == 𝜖𝜖,, 00,, 0000 {{ }}

00,, 11

odd 0s, last 0odd 0s, last 0

so far.so far.

11

0odd00odd0
Is 𝜖 Is 𝜖 ∼∼ 1 1??LL YesYes

L L == xx :: #0 #0 xx is even and x has no 00 is even and x has no 00{{ (()) }}

(1)(1)

indeed in indeed in , because the , because the helped us avoid a helped us avoid a . For the same reason, . For the same reason, , and clearly, and clearly LL 11 0000 01 01 ≁≁ 00 00LL

 because because is in is in and and is not (technically, they are distinguished by is not (technically, they are distinguished by). Thus). Thus 01 01 ≁≁ 𝜖 𝜖 𝜖𝜖 LL 0101 z z == 𝜖 𝜖

 is a PD set of size is a PD set of size , and so we need a fourth state to process it to. Now, what, and so we need a fourth state to process it to. Now, what S' S' == 𝜖𝜖,, 00,, 0000,, 0101{{ }} 44

about that string about that string ? It is in ? It is in , but does it belong to , but does it belong to ?? 010010 LL RR𝜖𝜖

It does not, but finding a string It does not, but finding a string such that such that is not so fast. We need to activate the is not so fast. We need to activate the zz LL 𝜖𝜖 ⋅⋅ zz ≠≠ L L 010010 ⋅⋅ zz(()) (())

"no "no " condition by making " condition by making begin with begin with , but then we need another , but then we need another ---but not right away---to make---but not right away---to make 0000 zz 00 00

. Thus . Thus is the shortest distinguishing string. This gives us: is the shortest distinguishing string. This gives us:z z ∈∈ L L z z == 010 010

So we wound up needing 5 states. Is that enough? Well, can we complete the machine with arcs fromSo we wound up needing 5 states. Is that enough? Well, can we complete the machine with arcs from
the "even the "even s, last char s, last char " state? Clearly " state? Clearly goes to goes to , and , and must go to an accepting state. If must go to an accepting state. If can can 00 00 00 deaddead 11 11

go to the start state, then we're done. Can it? Yes---by similar reasoning to putting a loop on go to the start state, then we're done. Can it? Yes---by similar reasoning to putting a loop on at the at the 11

start state. So start state. So is done and is done and is a largest possible PD set. is a largest possible PD set.MM S''S''

There is another kind of reasoning we could have done. There is another kind of reasoning we could have done. is the is the of two languages represented by of two languages represented by LL ∩∩

the 2-state DFA above and the following simple 3-state DFA for the "no substring 00" condition:the 2-state DFA above and the following simple 3-state DFA for the "no substring 00" condition:

deaddead

00

00

even0seven0s
11

S'' S'' == 𝜖𝜖,, 00,, 0000,, 0101,, 010010{{ }}

LL 00 ⋅⋅ 00 ≠≠ L L 0101 ⋅⋅ 00(()) (())
11

odd#0s, no danger on 0odd#0s, no danger on 0

Is 01 Is 01 ∼∼ 011 011??LL

11

00,, 11

00

odd 0s, last 0odd 0s, last 0

Is 𝜖 Is 𝜖 ∼∼ 010 010??LL Is LIs L 00 ≠≠ L L 010010 ⋅⋅ 00 ??(()) (()) nono

Is LIs L 010010 ≠≠ L L 010010 ⋅⋅ 010010 ??(()) (()) yes: 010 is in L but not 010010.yes: 010 is in L but not 010010.

0odd00odd0

1odd01odd0
0even00even0

00

to deadto dead

11

??

00 00

00
11

11 deaddead

11

even0seven0s

odd 0sodd 0s

00

11

00

11

00,, 11

[Rest of lecture added, will pick up briefly.][Rest of lecture added, will pick up briefly.]
Doing the Cartesian Product construction seems to suggest the final DFA will have Doing the Cartesian Product construction seems to suggest the final DFA will have states. states. 2 2 ×× 3 3 == 6 6
But the operation is intersection, so the "dead" condition in the upper DFA knocks-on to make the wholeBut the operation is intersection, so the "dead" condition in the upper DFA knocks-on to make the whole
third column dead in the product machine. Since you don't need two separate dead states, the numberthird column dead in the product machine. Since you don't need two separate dead states, the number
goes down to 5 after all. It is a good exercise to carry out the construction and verify that you get thegoes down to 5 after all. It is a good exercise to carry out the construction and verify that you get the
same 5-state DFA as above. In fact, you same 5-state DFA as above. In fact, you mustmust get the same machine, because of the following get the same machine, because of the following
corollary to the MNT.corollary to the MNT.

CorollaryCorollary: In the : In the direction of MNT, the DFA you get not only has the least possible number ofdirection of MNT, the DFA you get not only has the least possible number of ⇐⇐

states, it is unique. Hence, every regular language has a states, it is unique. Hence, every regular language has a unique minimum-size DFAunique minimum-size DFA. . ☒☒

Putting a checkbox in the corollary statement signifies that we've already essentially proved it. ThePutting a checkbox in the corollary statement signifies that we've already essentially proved it. The
notes by Debray prove instead that every DFA can be reduced to a unique minimum one via the notes by Debray prove instead that every DFA can be reduced to a unique minimum one via the DFADFA
minimization algorithmminimization algorithm. The algorithm is interesting for its own sake as IMHO the easiest example of. The algorithm is interesting for its own sake as IMHO the easiest example of
"dynamic programming" but for us it is just a "skim". The reasoning of both halves of MNT helps us"dynamic programming" but for us it is just a "skim". The reasoning of both halves of MNT helps us
recognize minimum-size DFA cases, even extreme ones.recognize minimum-size DFA cases, even extreme ones.

PropositionProposition: For each : For each , the unique minimum DFA for , the unique minimum DFA for has has states. states.kk ≥≥ 11 LL == 00 ++ 11 11 00 ++ 11kk (())** (())k-1k-1 22kk

Proof: Take Proof: Take . Then . Then has size has size . We claim that . We claim that is PD for is PD for : Let any : Let any ,,

,,
S S == 00,, 11{{ }}kk SS 22kk SS LLkk xx,, y y ∈∈ S S

x x ≠≠ y y

be given. By be given. By , there is some position , there is some position (let's number from 1) in which they differ. Take (let's number from 1) in which they differ. Take x x ≠≠ y y ii

. Then . Then and and differ in position differ in position from the end, so from the end, so . This pproves the. This pproves the z z == 0 0i-1i-1 xzxz yzyz kk LL xzxz ≠≠ L L yzyzkk(()) kk(())

claim, so the consequence is that any DFA claim, so the consequence is that any DFA such that such that needs at least needs at least states. Well, states. Well, MMkk LL MM == L L((kk)) kk 22kk

we can build a correct we can build a correct of that size by having one state of that size by having one state for each possible combination for each possible combination of last of last MMkk qqww ww kk

bits read (treating an initial small string like bits read (treating an initial small string like as if it had as if it had leading 0s) and defining leading 0s) and defining .. 1010 kk -- 22 𝛿𝛿 qq ,, cc == qq((bvbv)) vcvc

 The final states are The final states are for those for those that begin with that begin with : since : since , this , this is in the is in the th position fromth position from qqww ww 11 ||ww|| == k k 11 kk

the right. So this the right. So this is the unique minimum DFA for is the unique minimum DFA for . . MMkk LLkk ☒☒

Note that the NFA Note that the NFA from an earlier lecture only needs from an earlier lecture only needs states. Thus this also demonstrates states. Thus this also demonstrates NNkk kk++ 11
cases where the NFA-to-DFA construction has an cases where the NFA-to-DFA construction has an unavoidableunavoidable "exponential explosion." Furthermore, "exponential explosion." Furthermore,
the regular expression for the regular expression for in the proposition statement (call it in the proposition statement (call it) needs only) needs only symbols, symbols, LLkk rrkk 1212 ++ kkloglog22(())

the log part for the bits in the number the log part for the bits in the number . This is an exponential step . This is an exponential step downdown in size. The upshot is in size. The upshot is kk -- 11
that NFAs can sometimes be exponentially more that NFAs can sometimes be exponentially more succinctsuccinct than DFAs, and regular expressions (with than DFAs, and regular expressions (with
numerical powering) can be even more succinct in some cases.numerical powering) can be even more succinct in some cases.

