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The theorem was proved in 1958 by John Myhill and Anil Nerode while they were at the University ofThe theorem was proved in 1958 by John Myhill and Anil Nerode while they were at the University of  
Chicago.  Myhill joined the UB Math Department in 1966 and stayed until his death in 1987.  NerodeChicago.  Myhill joined the UB Math Department in 1966 and stayed until his death in 1987.  Nerode  
joined Cornell in 1959 and is still active---he is the longest serving professor there and directed thejoined Cornell in 1959 and is still active---he is the longest serving professor there and directed the  
Cornell Mathematical Sciences Institute in the 1980s when I was fortunate to earn an MSI postdocCornell Mathematical Sciences Institute in the 1980s when I was fortunate to earn an MSI postdoc  
there.  I was hosted in the Computer Science Department by Juris Hartmanis.  Here is a post yesterdaythere.  I was hosted in the Computer Science Department by Juris Hartmanis.  Here is a post yesterday  
from Professor Nerode's Facebook stream:from Professor Nerode's Facebook stream:

We have proved only one direction.  The whole theorem says:We have proved only one direction.  The whole theorem says:
  
TheoremTheorem: A language : A language  is regular  is regular all PD sets for all PD sets for  are finite. are finite.LL ⟺⟺ LL

  
We've proved that if We've proved that if  has an infinite PD set, then  has an infinite PD set, then  is not regular.  This is the  is not regular.  This is the  direction, though it direction, though it  LL LL ⟹⟹

may sound like the reverse.  It is the contrapositive of  the may sound like the reverse.  It is the contrapositive of  the  direction.  To complete the direction.  To complete the  ⟹⟹

equivalence, we need to prove the equivalence, we need to prove the direction.direction.⟸⟸

  
ProofProof: All PD sets for : All PD sets for  are finite is the same as saying the equivalence relation  are finite is the same as saying the equivalence relation  has only finitely has only finitely  LL ∼∼ LL

many equivalence classes.  Take many equivalence classes.  Take  to be the set of equivalence classes.  For any string  to be the set of equivalence classes.  For any string   QQ x x ∈∈  𝛴 𝛴**

(where (where  is understood to be the alphabet that  is understood to be the alphabet that  is "over"), there is exactly one equivalence class  is "over"), there is exactly one equivalence class  to to  𝛴𝛴 LL RRxx

which it belongs.  Note that which it belongs.  Note that  is an equivalence class, thus a member of  is an equivalence class, thus a member of , and it will serve as the, and it will serve as the  RR𝜖𝜖 QQ

start state start state  of the DFA  of the DFA  we are building.  Next define we are building.  Next definess MM

  
..                                                                F                                                                 F ==   RR ::  x  x ∈∈  L L{{ xx }}

  
Note that even though Note that even though  may be infinite,  may be infinite,  can be finite because  can be finite because  and  and  can coincide---indeed, will can coincide---indeed, will  LL FF RRxx RRyy

coincide whenever coincide whenever .  Indeed, .  Indeed,  must be finite, because  must be finite, because  is a subset of  is a subset of  which is finite by the which is finite by the  x x ∼∼  y yLL FF FF QQ

premise of premise of .  Finally, we define .  Finally, we define  by the rule by the rule⟸⟸ 𝛿𝛿

  
 . .𝛿𝛿 RR ,, cc   ==  R R(( xx )) xcxc

  

  

  



For this to be "well defined" we need to show that it depends only on the equivalence class, not on anyFor this to be "well defined" we need to show that it depends only on the equivalence class, not on any  
 that happens to represent it.  So suppose  that happens to represent it.  So suppose , i.e., that , i.e., that  also belongs to  also belongs to , so that , so that ..    xx y y ∼∼  x xLL yy RRxx RR   ==  R Ryy xx

We need to show that We need to show that  too.  This follows if  too.  This follows if  is the same as  is the same as .  And justifying this is.  And justifying this is  𝛿𝛿 RR ,, cc   ==  R R(( yy )) xcxc RRycyc RRxcxc

left as a study guide.  Then left as a study guide.  Then  is a legal DFA.  And  is a legal DFA.  And  because  because  hits its hits its  M M ==   QQ,,𝛴𝛴,, 𝛿𝛿,, ss,, FF(( )) LL MM   ==  L L(( )) MM

accepting states exactly on the strings accepting states exactly on the strings  that belong to  that belong to .  Thus .  Thus  is regular.   is regular.  xx LL LL ☒☒
  
We can use this We can use this direction to help us understand regular languages and build DFAs for them.  Heredirection to help us understand regular languages and build DFAs for them.  Here  ⟸⟸

is a simple example with is a simple example with .  Consider .  Consider is evenis even .  [Note: In the actual.  [Note: In the actual  𝛴 𝛴 ==   00,, 11{{ }} L L == x x ∈∈ 𝛴𝛴 ::  #0 #0 xx   {{ ** (( )) }}

lecture, I quantified lecture, I quantified  instead, but this works better with the example that followed.]  Then  instead, but this works better with the example that followed.]  Then   #1#1 xx(( )) x x ∼∼  y yLL

iff the numbers of iff the numbers of s in s in  and  and  are both even or both odd.  Hence the relation  are both even or both odd.  Hence the relation  has just two has just two  00 xx yy ∼∼ LL

equivalence classes.equivalence classes. The DFA The DFA  is basically one we have already seen: is basically one we have already seen:  MM
  
  

  
Now let's try a trickier example by conjoining "even Now let's try a trickier example by conjoining "even s" with another condition of not having s" with another condition of not having  as a as a  00 0000

substring:substring:  

L L ==   xx ::  #0 #0 xx  is even and x has no 00 is even and x has no 00{{ (( )) }}

[In regular expression terms, [In regular expression terms,  equals  equals  but set-minus  but set-minus  is not a is not a  LL 11 0101 00 11   ⧵⧵   00 ++ 11 0000 00 ++ 11** **
**

** (( ))** (( ))** ⧵⧵

native regular operator so that doesn't help us even build an NFA, let alone a DFA, to accept native regular operator so that doesn't help us even build an NFA, let alone a DFA, to accept .  So let's.  So let's  LL

ignore this attempt and try using (1) to build a DFA ignore this attempt and try using (1) to build a DFA  by "MNT-enlightened trial and error."]  We know by "MNT-enlightened trial and error."]  We know  MM

that that , so the start state will be accepting, and that , so the start state will be accepting, and that  and  and  are both not in  are both not in .  Indeed, .  Indeed,  causes causes  𝜖 𝜖 ∈∈  L L 00 0000 LL 0000

a "dead condition" because no string beginning with a "dead condition" because no string beginning with  can possibly belong to  can possibly belong to , so it should go to a, so it should go to a  0000 LL
dead state.  That gives us part of the machine:dead state.  That gives us part of the machine:
  

  
How about the string How about the string ?  It can still be a loop at the start state.  At the left end of a string it makes no?  It can still be a loop at the start state.  At the left end of a string it makes no  11

difference to having a possible difference to having a possible , so , so .  But what about the loop on .  But what about the loop on  which we had at the which we had at the  0000 1 1 ∈∈  R R𝜖𝜖 11

"odd" state?  Can we still direct it back to that state?  It is equivalent to ask whether "odd" state?  Can we still direct it back to that state?  It is equivalent to ask whether .  To see.  To see  0 0 ∼∼  01 01LL

why not, consider why not, consider  and  and .  Take .  Take .  Then .  Then  is not in  is not in  but  but  is is  x x ==  0 0 y y ==  01 01 z z ==  0 0 xz xz ==  00 00 LL yz yz ==  010 010
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L L ==   xx ::  #0 #0 xx  is even and x has no 00 is even and x has no 00{{ (( )) }}
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indeed in indeed in , because the , because the  helped us avoid a  helped us avoid a .   For the same reason, .   For the same reason, , and clearly, and clearly  LL 11 0000 01 01 ≁≁  00 00LL

 because  because  is in  is in  and  and  is not (technically, they are distinguished by  is not (technically, they are distinguished by ).  Thus).  Thus  01 01 ≁≁  𝜖 𝜖 𝜖𝜖 LL 0101 z z ==  𝜖 𝜖

 is a PD set of size  is a PD set of size , and so we need a fourth state to process it to.  Now, what, and so we need a fourth state to process it to.  Now, what  S' S' ==   𝜖𝜖,, 00,, 0000,, 0101{{ }} 44

about that string about that string ?  It is in ?  It is in , but does it belong to , but does it belong to ??    010010 LL RR𝜖𝜖

  
It does not, but finding a string It does not, but finding a string  such that  such that  is not so fast.  We need to activate the is not so fast.  We need to activate the  zz LL 𝜖𝜖 ⋅⋅ zz   ≠≠  L L 010010 ⋅⋅ zz(( )) (( ))

"no "no " condition by making " condition by making  begin with  begin with , but then we need another , but then we need another ---but not right away---to make---but not right away---to make  0000 zz 00 00

.  Thus .  Thus  is the shortest distinguishing string.  This gives us: is the shortest distinguishing string.  This gives us:z z ∈∈  L L z z ==  010 010

  

  
So we wound up needing 5 states.  Is that enough?  Well, can we complete the machine with arcs fromSo we wound up needing 5 states.  Is that enough?  Well, can we complete the machine with arcs from  
the "even the "even s, last char s, last char " state?  Clearly " state?  Clearly  goes to  goes to , and , and  must go to an accepting state. If  must go to an accepting state. If  can can  00 00 00 deaddead 11 11

go to the start state, then we're done.  Can it?  Yes---by similar reasoning to putting a loop on go to the start state, then we're done.  Can it?  Yes---by similar reasoning to putting a loop on  at the at the  11

start state.  So start state.  So  is done and  is done and  is a largest possible PD set. is a largest possible PD set.MM S''S''

  
There is another kind of reasoning we could have done.  There is another kind of reasoning we could have done.   is the  is the  of two languages represented by of two languages represented by  LL ∩∩

the 2-state DFA above and the following simple 3-state DFA for the "no substring 00" condition:the 2-state DFA above and the following simple 3-state DFA for the "no substring 00" condition:
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11
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11

00,, 11
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Is 𝜖 Is 𝜖 ∼∼  010 010??LL Is LIs L 00   ≠≠  L L 010010 ⋅⋅ 00 ??(( )) (( )) nono

Is LIs L 010010   ≠≠  L L 010010 ⋅⋅ 010010 ??(( )) (( )) yes: 010 is in L but not 010010.yes: 010 is in L but not 010010.  
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[Rest of lecture added, will pick up briefly.][Rest of lecture added, will pick up briefly.]
Doing the Cartesian Product construction seems to suggest the final DFA will have Doing the Cartesian Product construction seems to suggest the final DFA will have  states. states.    2 2 ××  3  3 ==  6 6
But the operation is intersection, so the "dead" condition in the upper DFA knocks-on to make the wholeBut the operation is intersection, so the "dead" condition in the upper DFA knocks-on to make the whole  
third column dead in the product machine.  Since you don't need two separate dead states, the numberthird column dead in the product machine.  Since you don't need two separate dead states, the number  
goes down to 5 after all.  It is a good exercise to carry out the construction and verify that you get thegoes down to 5 after all.  It is a good exercise to carry out the construction and verify that you get the  
same 5-state DFA as above.  In fact, you same 5-state DFA as above.  In fact, you mustmust get the same machine, because of the following get the same machine, because of the following  
corollary to the MNT.corollary to the MNT.
  
CorollaryCorollary: In the : In the direction of MNT, the DFA you get not only has the least possible number ofdirection of MNT, the DFA you get not only has the least possible number of  ⇐⇐

states, it is unique.  Hence, every regular language has a states, it is unique.  Hence, every regular language has a unique minimum-size DFAunique minimum-size DFA.  .  ☒☒
  
Putting a checkbox in the corollary statement signifies that we've already essentially proved it.  ThePutting a checkbox in the corollary statement signifies that we've already essentially proved it.  The  
notes by Debray prove instead that every DFA can be reduced to a unique minimum one via the notes by Debray prove instead that every DFA can be reduced to a unique minimum one via the DFADFA  
minimization algorithmminimization algorithm.  The algorithm is interesting for its own sake as IMHO the easiest example of.  The algorithm is interesting for its own sake as IMHO the easiest example of  
"dynamic programming" but for us it is just a "skim".  The reasoning of both halves of MNT helps us"dynamic programming" but for us it is just a "skim".  The reasoning of both halves of MNT helps us  
recognize minimum-size DFA cases, even extreme ones.recognize minimum-size DFA cases, even extreme ones.
  
PropositionProposition: For each : For each , the unique minimum DFA for , the unique minimum DFA for  has  has  states. states.kk ≥≥ 11 LL == 00 ++ 11 11 00 ++ 11kk (( ))** (( ))k-1k-1 22kk

  
Proof: Take Proof: Take .  Then .  Then  has size  has size .  We claim that .  We claim that  is PD for  is PD for : Let any : Let any ,,  

,,  
S S ==   00,, 11{{ }}kk SS 22kk SS LLkk xx,, y y ∈∈  S S

x x ≠≠  y y

be given.  By be given.  By , there is some position , there is some position  (let's number from 1) in which they differ.  Take (let's number from 1) in which they differ.  Take  x x ≠≠  y y ii

.  Then .  Then  and  and  differ in position  differ in position  from the end, so  from the end, so .  This pproves the.  This pproves the  z z ==  0 0i-1i-1 xzxz yzyz kk LL xzxz   ≠≠  L L yzyzkk(( )) kk(( ))

claim, so the consequence is that any DFA claim, so the consequence is that any DFA  such that  such that  needs at least  needs at least  states.  Well, states.  Well,  MMkk LL MM   ==  L L(( kk)) kk 22kk

we can build a correct we can build a correct  of that size by having one state  of that size by having one state  for each possible combination  for each possible combination  of last  of last   MMkk qqww ww kk

bits read (treating an initial small string like bits read (treating an initial small string like  as if it had  as if it had  leading 0s) and defining  leading 0s) and defining ..  1010 kk -- 22 𝛿𝛿 qq ,, cc   == qq(( bvbv )) vcvc

 The final states are  The final states are  for those  for those  that begin with  that begin with : since : since , this , this  is in the  is in the th position fromth position from  qqww ww 11 ||ww||  ==  k k 11 kk

the right.  So this the right.  So this  is the unique minimum DFA for  is the unique minimum DFA for .  .  MMkk LLkk ☒☒
  
Note that the NFA Note that the NFA  from an earlier lecture only needs  from an earlier lecture only needs  states.  Thus this also demonstrates states.  Thus this also demonstrates  NNkk kk++ 11
cases where the NFA-to-DFA construction has an cases where the NFA-to-DFA construction has an unavoidableunavoidable "exponential explosion."  Furthermore, "exponential explosion."  Furthermore,  
the regular expression for the regular expression for  in the proposition statement (call it  in the proposition statement (call it ) needs only ) needs only  symbols, symbols,  LLkk rrkk 1212 ++ kkloglog22(( ))

the log part for the bits in the number the log part for the bits in the number .  This is an exponential step .  This is an exponential step downdown in size.  The upshot is in size.  The upshot is  kk -- 11
that NFAs can sometimes be exponentially more that NFAs can sometimes be exponentially more succinctsuccinct than DFAs, and regular expressions (with than DFAs, and regular expressions (with  
numerical powering) can be even more succinct in some cases.numerical powering) can be even more succinct in some cases.

  

  


