
CSE491/596, Fri. 9/25/20.   Turing Machines 
 
We saw that DFAs , nor even NFAs nor GNFAs, cannot recognize simple languages like M

.  How can we augment the DFA model to give it the needed capability?a  b :  m = nm n

1. Allow  to change a character it reads, storing it on its tape.M

2. Allow  to move its scanner left L as well as right R (or keep it stationary S).M
 
Capability 1 by itself changes nothing: the DFA would still have to move R past the changed character.  
Capability 2 by itself also does not allow recognizing any nonregular languages.  The proof, that every 
"two-way DFA" can be simulated by a simple 1-way DFA, is beyond our scope and involves another 
"exponential explosion" but we will cite it later to say that the class of regular languages equals 
"constant space" on a Turing machine.  
 
But if we give both capabilities together, then we can do it---and lots more besides.  The capabilities 
add two components to instructions in , making them 5-tuples:𝛿

 
   where  and  are states,  and  are chars, and p, c / d, D, q( ) p q c d D ∈  L, R, S{ }

 
The meaning is that if  is in state  and scans character , then it can change it to , move its M p c d

scanning head one position left, right, or keep it stationary, and finally transit to state .  The case q

 is the same as an ordinary FA instruction  where moving right is automatic.  I tend p, c, c, R, q( ) p, c, q( )

to like to write a slash for the second comma to emphasize that  are read and  are actions p, c d, D, q

taken; it also visually suggests  being changed to .  Graphically the instruction looks like:c d

We also regard the blank as an explicit character.  I will represent it as  in MathCha but in full LaTeX _

you can get "\text{\textvisiblespace}" which turns up the corners to look like more than just an 
underscore.  My other notes call the blank .  The blank belongs not to the input alphabet  but to the B 𝛴

work alphabet  (capital Gamma) which always includes  too.  We allow going past the right end of 𝛤 𝛴

the input string  where successive tape cells each initially hold the blank.  We can also allow x ∈  𝛴*

moving leftward of the first char of  where there are likewise blanks on a "two-way infinite tape", or we x

can stipulate that  is initially left-justified on a "one-way infinite tape" and consider any left move from x
the first cell to be a "crash."  The Turing Kit package shows a two-way infinite tape and this is the 
default.  A compromise is to use a one-way infinite tape but place a special left-endmarker char in ∧

cell 0 with  occupying cells  where .  If  then the whole tape is initially blank x 1, … , n n =  |x| x =  𝜖

except in the last case it has just  in cell 0.  Then , as well as , belongs to  but not to .  We will ∧ ∧ _ 𝛤 𝛴

be free to put any other characters we want into , but the blank (and  if used) are required.  With all 𝛤 ∧

that said, the definition is crisp:

 

 

p q
c / d, L( )

or p

c / d, D( )

for a self-loop.



 
Definition: A  Turing machine is a 7-tuple  where  and  are as with a M = Q, 𝛴, 𝛤, 𝛿, _, s, F  ( ) Q, s, F 𝛴

DFA, the work alphabet  includes  and the blank , and𝛤 𝛴 _

 
.𝛿 ⊆  Q ×  𝛤  ×  𝛤  × L, R, S  × Q  { }

 
It is deterministic (a DTM) if no two instructions share the same first two components.  A DTM is "in 
normal form" if  consists of one state  and there is only one other state  in which it can halt, so F qacc qrej

that  is a function from  to .  The notation then becomes 𝛿 Q ⧵  q , q  ×  𝛤( { acc rej }) 𝛤 × L, R, S  × Q( { } )

M = Q, 𝛴, 𝛤, 𝛿, _, s, q , q .  ( acc rej)

 
To define the language  formally, especially when  is properly nondeterministic (an NTM), L M( ) M
requires defining configurations (also called IDs for instantaneous descriptions) and computations, but 
especially with DTMs we can use the informal understanding that  is the set of input strings that L M( )

cause  to end up in , while seeing some examples first.M qacc

 
 
Multi-Tape Turing Machines
 
 
Definition: A -tape Turing machine is a 7-tuple  where  and  are as with a DFA, k M = Q, 𝛴, 𝛤, 𝛿, _, s, F  ( ) Q, s, F 𝛴

the work alphabet  includes  and the blank , and𝛤 𝛴 _

 
.𝛿 ⊆  Q ×  𝛤  ×  𝛤  × L, R, S  × Q  k k { }k

 
It is deterministic (a DTM) if no two instructions share the same first two components.  A DTM is "in normal form" if 

 consists of one state  and there is only one other state  in which it can halt, so that  is a function from F qacc qrej 𝛿

 to .  The notation then becomes Q ⧵  q , q  ×  𝛤( { acc rej })
k

𝛤  × L, R, S  × Qk { }k

An individual instruction can be notated as:M = Q, 𝛴, 𝛤, 𝛿, _, s, q , q .  ( acc rej)

 
   where  and  are states,  and  are chars, and p, c , c , … , c / d , … , d , D , … , D , q( [ 1 2 k] [ 1 k] [ 1 k] ) p q cj dj

D  ∈  L, R, S ,  j =  1 to kj { }

 
 

Single Tape Vs. Multiple-Tape TMs---An Example
 

.                         has  but  so reject.L =  a  b :  n =  mm n x =  bbb m = 0 n = 3 ≠ m

 
By default,  are natural numbers, so  is allowed, and so .  Recall that when the n, m n =  m =  0  𝜖 ∈  L

input  is , the TM tape starts off completely blank.  Otherwise, the TM starts in the configuration of x 𝜖

scanning the first char of , with the rest of the tape blank.  So an initial scan of  means that  x _ x =  𝜖

 

 



and we can make  accept right away.  And if  starts with  then it cannot be in , so we can make  M x b L M
reject right away.  A Turing machine is not required to scan its entire input, though we can impose this 
requirement (and when we discuss time complexity classes, we will).  This gives us a good beginning 
on how to build  to recognize  step-by-step with goal-oriented reasoning.  [Lecture worked on the M L

diagram "interactively"; here we show some stages.]
 

 

 

qacc

_ / _, S( )

so x = 𝜖( )

qrej

b / b, S( )

b / X, L( )_ / _, L( )

a / a, R( )
b / b, R( )

X / X, L( )

s

a
We've already been able to handle immediate accept and reject
conditions in the start state.  Now we decide strategy when  x
begins with .  The idea is to -out 's and 's one-by-one ina X a b

alternation.  If we -out always the leftmost  and the rightmost X a b

then the string between (which after the first iteration is )a bm-1 n-1

will belong to  if and only if  does.  So we can recurse and keep:L x

Tape Invariant:  and after -ing a  the numbersX  a  b  X* * * * X b

of es on left and right are the same, so the string between X

them belongs to  if and only if the original  does.L x

To perform the -ing of one  then the rightmost , add these states and instructions:X a b

qacc

_ / _, S( )

so x = 𝜖( )

qrej

b / b, S( )

s

a / X, R( ) go right found
b?

Note  so we need 4 arcs at each non-𝛤 =  a, b, _, X{ }

halting state.  We added an arc on  at the "go right"X

state because on subsequent iterations the rightmost  b
will be next to an  not a blank.  But what if there is noX

such ?  Since we just -ed an , this means there wereb X a

initially more 's than 's, so we should reject.a b

b / X, L( )

_ / _, L( )

a / a, R( )

b / b, R( )

X / X, L( )

qacc

_ / _, S( )

so x = 𝜖( )

qrej

b / b, S( )

s

a / X, R( ) go right found
b?

a / a, S , X / X, S( ) ( ) to
qrej

done?

Now after -ing the matching  is when we need to X b
talk about what is successful termination.  If there is
an  to its left then there are no more 's nor 's, soX a b

we paired them all, thus an  should mean goto .  X qacc

footnote: do these loop arcs
enforce the tape invariant?

Getting an  once again means not enough 's.  Ona b

 is when we want to "rewind" to the left end.  That isb



 
Note that the input  can belong to  without belonging to .  Those strings abide by the tape x a  b* * L

invariant initially, and we can already see that  works correctly on those strings.  But what if  is M x

something like ?  Will our  accept when it shouldn't?  That's what the footnote is about.  aababb M
 
[This is the question where my Wed. 9/27/23 lecture left off.  I will pick up here.]

 

 

when we need  to stop a leftward loop.  So we cannotX
loop at the "done?" state itself but need another state:

b / X, L( )

_ / _, L( )

a / a, R( )

b / b, R( )

X / X, L( )

_ / _, S( )

so x = 𝜖( )

qrej

b / b, S( )

s

a / X, R( ) go right
found

right-

most b?

a / a, S , X / X, S( ) ( ) to
qrej

done?
X / X, S( )

to
qacc

a / a, S( )

qacc

go left

b / b, L( )

a / a, L( )

b / b, L( )
X / X, R( )

The next---and maybe last---questions are: where to send
the arc on , and what actions to do?  Most in particular:X

Can we complete the loop and the machine by making it be  going back to start?  (Yes)X / X, R( )

One thing to note is that if the char seen after executing  is a , then by the tapeX / X, R( ) b

invariant it means there are no more 's but still at least one  since we went from "done" a b

to "go left", so this is the case .  Well, in that case we should reject, and the arcm <  n

on  going to  is already there from the initial design.  So: this is OK and  is complete.b qrej M

footnote: do these loop arcs
enforce the tape invariant?

these too?

X  a  b  X  * * * *

X / X, R( )




