CSE491/596 Lecture Mon. 9/28 Single-Tape and Multi-Tape Turing Machines

[Lecture started by going over Problem Set 2, including the ideas for presentations staggered this week and next.
Then it showed how definitions from Fri. 9/25 needed only a little modification to define multitape Turing machines:

Definition: A k-tape Turing machine is a 7-tuple M = (Q, X, I, 6, _,s,F) where Q, s, F and X are as with a DFA,
the work alphabet I includes X and the blank _, and

6 c (QxT%) x (I x{L,R,S}F xQ) .

It is deterministic (a DTM) if no two instructions share the same first two components. A DTM is "in normal form" if
F consists of one state g4, and there is only one other state Grej in which it can halt, so that O is a function from
(Q \ {Gace, qrej}) X I'to (I' X {L,R,S} X Q). The notation then becomes M = (Q, X, I, 0, _, S, Gacc, Grej)-

(v, [c1,c2, ... ckl/[dr, ..., dk], [D1, ..., Dk],q) where pand q are states, ¢; and d; are chars, and
D; € {LLR,S}, j = 1tok

Then the lecture went into how to design a single-tape TM to recognize the language as follows.]

L = {a’”b”: n = m}

By default, 71, m are natural numbers, son = m = (is allowed, and so € € L. Recall that when the
input x is €, the TM tape starts off completely blank. Otherwise, the TM starts in the configuration of
scanning the first char of x, with the rest of the tape blank. So an initial scan of _ meansthatx = €
and we can make M accept right away. And if x starts with b then it cannot be in L, so we can make M
reject right away. A Turing machine is not required to scan its entire input, though we can impose this
requirement (and when we discuss time complexity classes, we will). This gives us a good beginning
on how to build M to recognize L step-by-step with goal-oriented reasoning. [Lecture worked on the
diagram "interactively"; here we show some stages.]

We've already been able to handle immediate accept and reject
conditions in the start state. Now we decide strategy when x
begins with a. The idea is to X-out a's and b's one-by-one in
alternation. If we X-out always the leftmost a and the rightmost b

then the string between (which after the first iteration is am_lb”_l)

will belong to L if and only if x does. So we can recurse and keep:

Tape Invariant: X* a* b* X™ and after X-ing a b the numbers
of Xes on left and right are the same, so the string between
them belongs to L if and only if the original x does.

To perform the X-ing of one a then the rightmost b, add these states and instructions:

found
(/-L) ?- A b/ X, L)

(XjX,I) AaNil
(LZ/(Z, R) footnote: do these loop arcs Q

(b/b, R) enforce the tape invariant?

Note I' = {a,b,_, X} so we need 4 arcs at each non-
halting state. We added an arc on X at the "go right"
state because on subsequent iterations the rightmost b
will be next to an X not a blank. But what if there is no
such b? Since we just X-ed an a, this means there were
initially more a's than b's, so we should reject.

' (found\ @/4,9),(X/X,S) o

(/L) w2 [Grej
(X/X,L)

(b/X%
(a/a,R)
(b/b,R)

Now after X-ing the matching b is when we need to
talk about what is successful termination. If there is
an X to its left then there are no more a's nor b's, so
we paired them all, thus an X should mean goto g,..

(b/b,5)

(_/_S) (b/b,5)

(sox =€)

Getting an a once again means not enough b's. On

b is when we want to "rewind" to the left end. That is
when we need X to stop a leftward loop. So we cannot
loop at the "done?" state itself but need another state:

fround\ (@/8,9),(X/X,S) 1o
i |

(b/X,L)

footnote: do these loop arcs
enforce the tape invariant?

(/L)
(X/X,L)

(a/a,L)
(b/b,L) thesetoo?

The next---and maybe last---questions are: where to send
the arc on X, and what actions to do? Most in particular:

Can we complete the loop and the machine by making it be (X /X, R) going back to start?

One thing to note is that if the char seen after executing (X/ X, R) is a b, then by the tape
invariant it means there are no more a's but still at least one b since we went from "done"
to "go left", so this is the case m < n. Well, in that case we should reject, and the arc

on b going to qrej is already there from the initial design. So: this is OK and M is complete.

[This is the question where my Mon. 9/28 lecture left off. | will pick up here.]

Note that the input x can belong to a* b* without belonging to L. Those strings abide by the tape
invariant initially, and we can already see that M works correctly on those strings. But what if x is
something like aababb? Will our M accept when it shouldn't? That's what the footnote is about.

Assuming M is correct---or quickly fixable if not---we can ask, how long does it take to accept a good
x = a" b" interms of n? The answer is, it takes @(nZ) steps, owing to lots of backing-and-forthing.

Can we make it run faster? There is a way to make it run much faster on one tape, in O(n log 1) time,
but we can get an optimal O(n) running time by using a second tape:

(a_/aX,RR)

\/popX(——/——'S@ to

(b_/b_,SL) \6 Guce

(a_/aX, RR) (bX/b_,RL)

(_/__55) =T aaaaalbbbbb_ _
XXXXX[] ___

NJ

Arcs not shown go to g

Note the straightforwardness of the design as well as the efficiency. Also note the usefulness of
having the second tape be two-way infinite with a blank to the left of the "column" initially holding the
firsta in x (if any). An alternative convention is to make both tapes one-way infinite but with a special
char A in cell 0 at the left end on tape 1---so that the initial configuration Iy has A x; --- x,, on tape 1
and just A on tape 2 "underneath" the A on tape 1. We can still start with the tape heads scanning
the cells in "column 1" even if both are blank (so x = ¢€). Then the final accepting instruction in the
"pop" state becomes (_A /_A,SS).

This two-tape DTM has the properties that:
« the input tape head never moves L and never changes a character;

« whenever the second tape moves L, it writes a blank in the cell it just left.
The second condition forces the second tape to behave like a stack (except for some "flex" in how top-
of-stack is treated). A TM obeying these condiitons is formally equivalent to a pushdown automaton
(PDA). A language is context-free (and belongs to the class CFL) if it is recognized by some PDA that
may be nondeterministic (an NPDA); if the machine is deterministic (hence a DPDA) then it belongs to

the class DCFL. Every regular language is a DCFL, and {a” b”} is an example of a DCFL that is not

regular. We will not say much more about CFLs and DCFLs.

