
CSE491/596 Lecture Mon. 2 Oct. 2023: Defining Computability and (Un)Decidability
 
[Class began with some general remarks and review of Assignment 2, problem (1).]
 
Definition: For any language  over an alphabet , or function :A 𝛴 f :  𝛴  𝛴*

→
*

•  is computably enumerable (c.e.) if there is a TM  such that .A M L M  =  A( )

– Synonyms: recursively enumerable (r.e.), Turing-acceptable.
•  is decidable if there is a total DTM  such that .A M L M  =  A( )

– Synonym: recursive.  (Avoid the term "recognizable"---it is used both ways).
•  is computable if there is a transducer  that computes  for all .f M f x( ) x ∈  𝛴*

– Note that writing  standardly means that the domain of  is all of , so any f :  𝛴  𝛴*
→

* f 𝛴*

 computing  must be total.  But we often say  is total computable to remind about this M f f

and clarify when we are not allowing  to be a partial function.   Other synonyms: recursivef
 function, total recursive.

 
Here is a helpful little proposition that helps in understanding these concepts.  Recall that with the 
Myhill-Nerode theorem, we have been writing  as if the langauge  is a Boolean-valued function.  L x( ) L

We can distinguish the function from  by calling it , where  is the Greek letter chi to stand for L 𝜒 xL( ) 𝜒

characteristic function.
 
Proposition: A language  is decidable if and only if  is a total computable function.L 𝜒L

 
The proof is "by good housekeeping."  The important contrast is that when  is only known to be c.e., L

then  need not be computable: on some , the machine might never halt.  For a pivotal 𝜒L x ∉  L
example, consider the language of the "3n+1 Problem" shown in the opening week:
 

, where .L =  x ∈  N  :  ∃ r  f x  =  1+ ( ) r( ) f x  =  if x is even then x / 2 else 3x + 1( )

 
We can regard binary numbers and binary strings as interchangeable, in various ways.  One way 
specific to , meaning the positive natural numbers, is to delete the leading  in standard binary N

+ 1

notation, which gives a 1-to-1 correspondence to a language  over .  The demo showed a L' 0, 1{ }*

particular TM  that ends on a single  whenever  but does not halt otherwise.M 1 x ∈  L
 

• The Collatz conjecture says that  equals all of , likewise .  Then  is actually total L N
+ L' =  𝛴* M

and that makes  "trivially" decidable.L

• But all we know at this point is that  is computably enumerable.  The  shown in the demo is, I L M
believe, the tiniest program that no one has been able to prove is total.

 
If a language is not decidable, it is called undecidable.  This includes c.e. languages that are not 
decidable.  Starting next week we will cover techniques for showing that languages are undecidable.  It 
helps to have notation to map out classes of languages:

 

 



 
• The class of c.e. languages is denoted (only) by .RE

• The class of decidable languages is denoted by  (occasionally, ).REC DEC

• The class of regular languages is denoted by .  The facts that every regular language is REG

decidable, and some decidable languages are not regular (such as  can be neatly a  bn n )

captured by writing .REG ⊂  REC

• The classes of langauges recognized by deterministic and nondeterministic PDAs are denoted 
by  and , respectively, as we have seen.  DCFL CFL

• The classes of languages recognized by deterministic and nondeterministic LBAs are denoted 
by  and , respectively.  DLBA NLBA

• The progression  is called the Chomsky Hierarchy after Noam REG ⊂  CFL ⊂  NLBA ⊂  RE

Chomsky, who characterized these classes via notions of grammars.  One can insert  and DCFL

 and keep a proper progression, but the corresponding grammar notions are "wonky" in the REC

former case and nonexistent in the latter.  
• However, although , whether  is properly contained in  is unknown.  CFL ⊂  DLBA DLBA NLBA

It is rather like the  versus  question.  We will not address grammars but we will later see P NP

that  and  equal deterministic and nondeterministic space, respectively.DLBA NLBA

• For any class , the complements of languages in  form the class - .  Note that since the C C co C

complement of a regular language is always regular, we have - ; the - does not co REG =  REG co
mean "not regular" here.  

• We will concentrate on , , - , and "neither c.e. nor co-c.e." for the two coming weeks. REC RE co RE

 Here is a little roadmap:

 
Our next objective is to convey that these concepts apply not just to Turing machines but to the full 
extent of computing.  We will show that deterministic Turing machines are reasonably efficiently 
equivalent to high-level programming models [quantum ones maybe not so efficiently].
 
 
 

 

 

REC

RE co-RE

neither c.e. nor co-c.e.
This diagram conveys some extra information:

 is closed under complements, ◎ REC

, and◎ RE ∩  co - RE =  REC

 All three classes are closed downward under◎

     computable many-one/mapping reductions.
We will prove these after we establish the 
equivalence between Turing machines and
high-level programming languages.

REG



From Turing Machines to "Real" Programs
 
What kinds of operations can Turing machines carry out?  We have seen most of the following:

1. Copy a string from one tape to a second tape
2. Compare two strings on separate tapes to test whether they are equal
3. Search leftward or rightward on a tape until reaching the end or a sought-for char
4. Loop with back-and-forth passes until an exit condition is met
5. Multiply numbers by 2 (by appending a 0), or divide by 2 if even, or multiply by 3...
6. Add two binary numbers
7. Remember a char in a state while shifting an entire string over one cell
8. Use dedicated states to write a dedicated string to a desired location

 
We haven't seen the last two.  Here is an example of how to insert a  in front of a binary string  and ∧ x

also put a  after it:$

 

 
This shows that the " convention" for  can always be emulated by the bare-startup convention, at ∧ I x0( )

the cost of only  extra steps on inputs of length .  Moreover, if we need to insert a special char, 2n + 1 n

say , in the middle of a tape string at any given state , we can attach this entire routine at state  by @ q q

making  and using  in place of , except that the last arc becomes  so that s =  s' =  q @ ∧ @ / @, S( )

the head is scanning  in state  and so can execute an option that was not available before.  @ s' =  q
This "shift-over" routine can thus act like an invokable process that returns control to its point of call.  
We can repeat it to make more room.  We can also compose it with operation 8 by having more states 
in place of " " that lay down whatever fixed string  we want to append after .write$ y x
 
We can make other operations by composing two or a few of the above.  By combining 2 and 3 we can 
solve the problem of finding a substring  inside a larger string  (by testing place-by-place, but there w x
are also quicker ways used by compilers).  We can multiply two binary numbers by using repeated 
addition or by using shifts to emulate the grade-school algorithm and adding up the shifted copies of 
the first number.  This small vocabulary of machine ops suffices to simulate a rudimentary assembly 

 

 

s

rem0

rem1

rew s'

0 /∧ , R( )

1 /∧ , R( )

1 / 1, R( )

0 / 0, R( )

1 / 0, R( )0 / 1, R( )

_ / 1, R( )

_ / 0, R( )

1 / 1, L( )
0 / 0, L( )

∧/∧ , R( )

e.g., 0  1  1  1  0  0  1  0    becomes
 0  1  1  1  0  0  1  0    ∧ $

write$
_ / $, L( )



language.  The following one is coded to use just one argument for each instruction, but it is fairly 
flexible: it even has indirect load (LDI) and store (STI):
 

1. LDL    : load a hard-coded literal integer  into the ALUn n

2. LDR   : load the contents of register  into the ALUY Y

3. LDI     : read the contents of  as another address , then do as in LDR Y Y Z Z

4. STO   : copy the contents of the ALU into register , replacing whatever is thereY Y

5. STI     : read  to get the indirect address , then do as in STO .Y Y Z Z

6. ADD   : add the contents of register  to the number currently in the ALUY Y

7. SUB   : subtract the contents of register  from the number currently in the ALUY Y

8. SHF    : shift the ALU by the hard-coded number  of places (shift left if  is negative)d d d
9. ABS      : take the absolute value of the number in the ALU
10. JMP  : jump to the hard-coded instruction number  if the ALU currently holds .ℓ ℓ 0

 
Indeed, the main reason for real assembly languages having many more primitive instructions is having 
different types and sizes of operands: 8-bit char, 16-bit int, 32 or 64-bit float, etc.  Whereas a real "RAM 
computer" has fixed-size registers, our Turing machine can emulate arbitrary-size registers thanks to 
how the "shift-over" routine can be sprinkled into its state code to make any extra room needed to store 
a bigger value.  Thus our "mini assembly" language is actually rich enough to be a compilation target 
for any high-level programming language (ignoring special object features put at machine level and the 
like).
 
The "Universal RAM Simulator" handout 
https://cse.buffalo.edu/~regan/cse396/UTMRAMsimulator.pdf

has enough hand-drawn detail to serve as proof-of-concept.  Immediately what it proves is: 
 
Theorem 1: We have built a single DTM  such that for any mini-assembly program  and integer U A

argument  to ,  on input  outputs the result (if any) of running  on input .  x A U ⟨A, x⟩ A x ☒
 
[Monday's lecture stopped here; what follows is blended into the notes for Wednesday.]
 
Here the angle brackets in  stand for "some transparent way of combining  and  into a single ⟨A, x⟩ A x
string."  We've already been using this notation with IDs, in case we would want to read them as strings 
(as later, we will).  One way to implement it is fine provided the angle brackets and comma don't occur 
inside  and : we can treat them as literal characters over, say, the ASCII or UNICODE alphabets---A x
which we can then convert to binary if we wish.  Another that works in this case is to just ram the two 
strings together as  or , which is fine in the handout since  begins with a  and ends with a xA Ax A !

semicolon, both of which we suppose do not occur inside .  In general, one can regard the angle x
brackets as applying a pairing function.  (Some sources devote time to pairing functions, which can be 
composed to encode any tuples as strings and also decode them, but we can dispense with the details.)
 
 

 

 

https://cse.buffalo.edu/~regan/cse396/UTMRAMsimulator.pdf


Now we add a further wrinkle using operation 8 above when  is a single fixed program, rather than A
one given on-the-fly.  
 
Theorem 2: Given any program  in any known high-level programming language (HLL) that uses P

standard input and output, we can build a Turing machine  such that for any input  to ,  on UP x P UP

input  replicates the stream output of .  In particular, if  computes a function  then  computes x P x( ) P f UP

the same function---and moreover, does so with roughly comparable efficiency.
 
Proof: First use our compilation target to create a mini-assembly program  that simulates .  Now AP P

 is a fixed literal string over the ASCII alphabet as encoded in the handout.  We can therefore create AP

 to use something like our "shift-over" routine to convert its input  into the string , which is UP x ⟨A , x⟩P

just  in the handout, on the first tape.  (Or we could use  which would work similarly.)  Then we A xP xAP

rewind the head on the first tape and send control to the start state of the fixed program  we wrote in U

Theorem 1.  Then for any ,x
 

,U x  ≃  U A , x  ≃  A x  ≃  P xP( ) ( P ) P( ) ( )

 
where the "\simeq" symbol says the computations must give the same result if they converge but ≃

allows both to diverge, as of course can happen.  
 
To address efficiency, note first that  and  use basically the same volume of memory registers, so P UP

the space usage is about the same.  The TM , however, needs extra time because it does not enjoy UP

true random access---it has to scroll up and down the whole line of registers to find a desired one.  The 
length  of that line of registers, however, includes only the ones that have been previously allocated, s

and those allocations used at least  steps of .  The linear search by  compounds that time by an s P UP

 factor per next instruction of .  Since  is also at most the total time  taken by  up to a given O s( ) AP s t P

point, the total compounded time is .  There is, however, a further complication: The "shift-over" O t2

routine may need to be invoked to make more room after repeated addition, for instance.  The literal 
code in my handout would bump up the time to  or maybe even , depending on O t3 O t4

implementation details.  However, in 1972, Stephen Cook and Robert Reckhow of Toronto worked out a 
clever caching scheme by which, if  uses the fair-cost time measure, which charges for the lengths of P

the operands in a RAM instruction, then the time goes back down to .  O t2 ☒
 

 

 


