
CSE491/596 Lecture Wed. 10/4/23: Simulation Theorems
 
Before we take a second look at the "Universal RAM Simulator", let's see another example of a Read-
Evaluate-Write loop.  (Called a REPL in programming languages.)  First, a definition:
 
Definition: A Turing machine  runs in time  if for all  and inputs  of length ,  halts within M t n( ) n x n M x( )

 steps.  If  is nondeterministic, all possible computations must halt within  steps.t n( ) M t n( )
 
For example, every DFA---and every NFA without -transitions---runs in time , which is the 𝜖 t n = n + 1( )
fastest possible time that reads every input char and the blank that says the input is terminated.  (This 
is sometimes called running in real time.)  It is convenient to apply -notation to time without caring O
about the exact number of steps.  
 
 
Multi-Tapes to Single Tapes
 
All the 2-tape machines we have seen have run in  time, which is called linear time, but some of O n( )

the 1-tape machines have run in  time, which is quadratic time.  For some languages that are in 𝛩 n2

linear time on 2-tape TMs, such as , where  means  reversed and " " PAL = x :  x = xR xR x x = xR

defines a palindrome, one can prove that single-tape TMs cannot do better than quadratic time.  But at 
least they can't do worse:
 
Theorem 1: For any -tape TM  that runs in time , we can build a 1-tape k M = Q, 𝛴, 𝛤, 𝛿, ⎵, s, F( ) t n( )

TM  that simulates  and runs in  time.M' M O t n( )2

 
Proof Sketch:  uses work alphabet , which can pack the  chars in any "column " of the  M' 𝛤' =  𝛤k k j k
tapes of  into one "superchar" in cell  on the one tape of .  We also need chars that say whether M j M'

they are currently being scanned by a tape head of , so we actually have  where  M 𝛤' =  𝛤∪ 𝛤( ⦿)k 𝛤⦿

is a "dotted copy" of .  Here is a diagram of how the memory map of  relates to  for , which 𝛤 M' M k = 3
is the number of tapes in our "Universal Ram Simulator":
 

 

 

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop


Initially,  converts each char  into the "superchar"  which packs  and  M' x( ) xi x ⎵⎵⎵… ⎵[ i ] xi k - 1

blanks into one char of  and rewinds its single tape head onto the superchar  which 𝛤 ∧ ⎵ ⎵ ⋯ ⎵[ ⦿ ⦿ ⦿ ⦿]

lines up the  "virtual" tape heads of  on  and blanks below it to the left of .  Thereafter,  k M ∧ x M'

simulates each step of  in one left-to-right pass that reads the -tuple of scanned characters M k
according to which parts of superchars have  and then a right-to-left pass that performs the 

⦿

corresponding instruction of .  This leaves  ready to simulate the next step by .𝛿 M' M
 
The total time for each pass is initially  but can grow if and when  uses more tape cells beyond 2n + 4 M
the end(s) of .  The width of a pass cannot be more than (twice the) time taken by  thus far, so it is x M
always less than  (or less than , if  uses cells to the left of  as well).  Thus the total time is t n( ) 2t n( ) M x

.  O t n( )2 ☒
 
 
Universal Simulation in Polynomial Time
 
Now let's see how much time overhead the "Universal RAM Simulator" has:

 

 

Example instruction: p, a00 / a00 , RLR , q( [ ] [ ] [ ] )



 
The following attempt at detailed time analysis can be taken as FYI:
 

• Let us suppose the given program  is fixed, and let  be the length of whatever input  is given P n x
to the program.

• The RAM can make multiple copies of  and allocate new registers to store them.  So in  steps x t
by the RAM, the register tape can swell to size .  It cannot grow more because we did not ∼ nt
give the RAM a MUL instruction---or any instruction that can double the side of the operand.  
(You have to multiply by repeated addition.  Cf. RISC.)  

• Once you have order-of  size-  registers on the tape, it can take order-of  steps to look up t n nt

any one.  Over  sequential steps, this can take  total time...t Θ nt2

• ...except that storing a slightly bigger value to a register can exhaust its room. This is signaled by 
the Turing machine getting the register's closing ']' character when it was still wanting to write 

 

 

On ']' / '%'
shift whole
tape over,
rewind to %

On ']' / '%'
shift whole
tape over,
rewind to %



another character from the ALU tape.  The TM needs to "make room" by shifting the entire 
register tape from that point rightward one more cell to the right.

• This can employ the shift-over routine given in machine detail in Monday's lecture, say using '%'
 to represent the fresh blank register cell rather than .  A separate copy of that code needs to ∧

be attached everywhere  is storing to a register, but that's OK: the original  diagram is finite M M
so only finitely many copies of the code for this "shift-over" daemon need to be added.  

• The time to run the daemon is order- .  Presuming that the RAM word size stays no larger than nt

, you need it at most  times per each step of the RAM, for  time shifting O n( ) O n( ) O n  t2

overall.  (The RAM word size can grow, but via an amortized analysis that takes into account 
the time it takes the RAM overall to grow it, this assumption stays roughly valid.)  This dominates 
the  steps to look up the register.O nt( )

• So over  steps by the RAM, the worst-case time for  is  time.t M O n  t2 2

 
If we suppose  then this is  time.  Doing a mega-handwave now, if you employ a caching t ≥ n O t4

scheme on the register tape analogous to the C++ vector object works, you can bring this down to 
 time.  Steve Cook, with some work joint with his student Robert Reckhow at the University O t t3 log

of Toronto, proved this and also that if the RAM uses the "fair cost" time measure (by which the cost of 
a basic operation is the number of bits in its operands), then the time overhead for  fair-cost RAM O t( )

time on inputs of length  is  time by the TM.  n O t  n2 log

 
Couple with the quadratic time overhead of 3-tapes-to-1, this translates to saying that  steps on the t

RAM can be simulated by from  to  time by the single-tape TM, depending on how one O t8 tO 4

regards the RAM time and whether you make more-complicated code via caching.  In all events, it is a 
polynomial time overhead.  That enables us to state the following theorem:
 
Theorem 2: For every program  written in any known executable programming language  (high-P L

level or otherwise) that uses standard input and standard output, we can build a 3-tape Turing machine 
 such that whenever  given  on standard input writes  to standard output,  given  on its MP P x y MP x

input tape writes  to a special output tape.  If  halts, then  halts---and if  halts within  y P x( ) M xP( ) P x( ) t

steps, then  halts within  steps.M xP( ) tO 1( )

 
Proof: First, any compiler for   to a known code target can be converted into a compiler from   to L L

the "mini-assembler"---which is essentially similar to what the text calls a RAM.  So we can compile  P
to make an equivalent RAM program .  Then take  to be the Turing machine  in the handout, RP MP T
but with the binary text of  already written on its input tape.  More precisely,  begins with a series RP MP

of dedicated instructions that write out  char-by-char in front of any input  on its first tape, so it has RP x
 there.  Then it just segues to the start state of .  R #xP T ☒

 
Theorem 2: We can build a universal Turing machine, meaning a single TM  that takes inputs of U
the form  and simulates , again with polynomial-time overhead.⟨M, x⟩ M x( )

 

 



 
Here  denotes an unspecified but transparent way of combining the code of  and the bits of  ⟨M, x⟩ M x
into a single string over whatever alphabet we need. In the Turing Kit, user-designed Turing machines 

 are stored as ASCII files, so that can be the code  of .  ASCII can be converted to strings over M ⟨M⟩ M
 if we so desire.  The files are self-delimiting, so we can then define  by just appending  to 0, 1{ } ⟨M, x⟩ x

.  Or, assuming that neither  nor  has any commas or angle brackets, we can regard  as ⟨M⟩ M x ⟨M, x⟩
literally ' ' then whatever string code of , then comma, then , and finally ' '.  The choice of tupling ⟨ M x ⟩

scheme does not matter in detail.
 
Proof: The Turing Kit is a high-level Java program  that reads a TM  and an input  and executes P M x

.  That is (essentially), .  Then compile  to  as above and call it .  Then M x( ) P ⟨M, x⟩  =  M x( ) ( ) P MP U
.  This notation includes that if and only if .  U ⟨M, x⟩  = P ⟨M, x⟩  =  M x( ) ( ) ( ) U ⟨M, x⟩ ↓( ) M x ↓( )

(The down arrow means "halts" while is read as "diverges" or "does not halt.")  ↑ ☒
 
The import is, simply: Turing machines have the same computing power as high-level 
programming languages, likewise the same power as the machines on which they run.  This is 
the main concrete evidence in support of the following.  Alonzo Church had earlier defined notions of 
"recursive" and "r.e." via logical schemes of recursion, before Alan Turing's famous 1936 paper proved 
his machines equivalent to them.  Church became Turing's PhD advisor at Princeton in 1937--38; I met 
him when he received an honorary doctorate from UB in 1990.   
 
 
The Church-Turing Thesis (three-part version):

1. Any HLL that will ever be devised will have the same computing power as the Turing machine.
2. Any physical device that will ever be built---even quantum computers---will have no more 

computing power than a Turing machine.
3. For any human being  who follows a consistent functional procedure to convert (sensory) H

inputs  into outputs , there exists a Turing machine  that on the same inputs  (under a x y MH x
natural string encoding, e.g., pixels for optical input) outputs the same values .  Moreover,  y MH

has comparable program size and efficiency to the "grey matter" of , or better.H
 
Plank 1 is often considered a "truism" but maybe it depends on plank 2, which survived a "quantum 
scare" from David Deutsch at Oxford in 1985 and is even more in play when we bring time-efficiency 
into the picture.  Plank 3 is the philosophically controversial one; the program and memory size  S
needed is the threshold that "The Singularity" talks about.  The "Part Deux" of the C-T thesis is often 
ascribed to Alan Cobham and Jack Edmonds from papers they wrote in 1965, in which they justified 
polynomial time as a benchmark for feasible problem-solving.
 
Polynomial-Time C-T Thesis: As above, plus the assertion that whatever the HLL and/or device 
physically implementing its programs, there will always be a constant  such that whatever the k

program/device does in time  can be emulated by  steps of the Turing machine.t O tk

 

 

 



This was also almost-universally believed until 1994, when Peter Shor proved that quantum computers 

can factor -digit numbers in time (idealized---no one has yet built quantum technology that can n nO 2

scale up), whereas the security of most Internet commerce and many other cryptosystems relies on 

concrete scaling of the belief that factoring requires roughly  time, well maybe  or 2
𝛺 n1/3

2
𝛺 n1/4

 time in most cases...  [Cf. the 1992 movie Sneakers and the novel Factor Man.]  2
𝛺 n1/5

 
But as long as we stick with "classical" machines---meaning non-quantum hardware---we can take both 
theses as given.  (Note: Actually, transistors and other chip elements are quantum devices, but the 
point is that they treat information in the classical manner of bits, as opposed to qubits.)  The import is:
 
The classes - , and later - , remain the same whenever we REC,  RE,  and co RE P,  NP,  and co NP
transfer their defining notions to any HLL or classical machine model.  Moreover, it is perfectly 
legitimate to describe Turing machines via pseudocode, provided the pseudocode gives enough detail 

to pin down the running time  within a linear , a quasi-linear , or at worst a polynomial , t O t( ) tO( ) tO 1( )

factor.
 

For example, the 2-tape TM we built to recognize  can be described by saying, "Copy a b : m =  nm n

leading 's to tape 2, then count against 's on the rest of tape 1, and accept iff the counts are equal a b
and the end is reached on tape 1 without any further  appearing. Runtime:  steps, which is a O m + n( )

linear in the length  of the input."m + n
 
 
A Simulation Not in Polynomial Time
 
Theorem 3: For every nondeterministic TM  we can build a deterministic TM  such that N M

.L M = L N( ) ( )
 
Proof: The Turing Kit could be upgraded to a version  that simulates a given NTM  on an input  by T' N x
branching to try all possibilities, accepting if and when some branch accepts .  The program  itself is x T'

deterministic.  Hence so is the equivalent Turing machine  obtained from  via Theorem 1.  MT' T' ☒
 
The one thing we don't know how to do is make  avoid exponential branching, which slows down the T'

time exponentially.  This is different from the situation with an NFA  on a given input , where we can N x
simulate  by the trick of maintaining the current set  of possible states after each bit  of , and N x( ) Ri i x
thus avoid the exponential blowup of converting  into a DFA.  Whether we can do a similar trick for a N
general NTM  is the infamous  problem, which we will come to soon.N NP = ?  P

 

 


