CSE491/596 Lecture Mon. 10/04/2021: Decision Problems

The Sipser text adopted the format for specifying decision problems that came from an older text by
Michael Garey and David S. Johnson. It further standardized the notation for naming these problems in
intro theory of computing courses. The general "G&J format" is:

[Name of problem in small caps]
INSTANCE: [a description of the input(s) to the problem: strings, numbers, machines, graphs, etc.]
QUESTION: [a yes/no condition where yes means the input is accepted]

INSTANCE is also called INPUT: one can abbreviate it to INST and QUESTION to QUES. The
language of the problem is the set of valid instances for which the answer is yes. Sometimes
confusingly, the name of the problem usually doubles as the name of the language. The Sipser text
also established a standard scheme for naming various decision problems that arise with the various
machine, regexp, and grammar classes in this subject. It is best described by example.

Apra: (The "Acceptance Problem for DFAs")
INST: ADFAM = (Q, X, 6,s,F) and astringx € X*.
QUES: Does M accept x?

The input to a decision procedure for this problem is given in the form (M, x). The name "Apr4" is
Sipser's. The name is used also for the language of instances where the answer is yes, which is:

Apra = {{M,x):Misa DFA and M accepts x}.

The length N of (M, x) can be reckoned as roughly of order m + n where m is the number of states in
Q (note that the number of instructions for a DFA is m times |X| and we can treat | X| as a fixed
constant such as 2) and n = |x| as usual. The alphabet of the Apr4 language can be reckoned as
ASClIl or even as {0, 1}. Here is a simple statement of an algorithm to solve the Apr4 problem:

1. Given (M, x), first decode M and x individually. (If not possible, reject.)
2. Run M(x) (using a simulator like the Turing Kit) until the DFA reaches the end of x.
3. Accept (M, x) if M accepted x, else halt and reject (M, x).

This pseudocode always halts because a DFA M always halts. To simulate a step of M(x) takes time
at most order-m; really it can be O(log m) time per step using good data structures (mainly being able
to assign a pointer to the destination state in any executed instruction). So the running time is O(mn)
which gives time O(NZ) taking the length N = |{M, x)| into account. Thus we can say:

 The algorithm is a decision procedure to solve the Apr4 problem.
* Hence the App4 problem and the Apr, language are called decidable.



In fact, they are decidable in polynomial time. Now suppose we have an NFA in place of the DFA:

Anra: (The "Acceptance Problem for NFAs")
INST: AnNFAN = (Q, X, 6,s,F) and a string x € X*.
QUES: Does N accept x?

The following qualifies as a decision procedure, albeit highly inefficient:
1. Given (N, x), first decode N and x individually.
2. Convert N into an equivalent DFA M.
3. Then run the decision procedure for Apr4 on (M, x) and give the same yes/no answer.

Step 3 will later be called reducing the (instance of the) latter problem to the (equivalent "mapped"
instance of the) former problem. But step 2 makes this an inefficient reduction---it can require order-of
2™ time where we are now calling m the number of states in N. Then again, step 2 does always halt,
so if halting is all you care about, it goes as a decision procedure. But faster is:

1. Given (N, x), first decode N and x individually.

2. Initialize R to be the e-closure of the start state of N.

3. For each char x; of x, build the set R; of states reachable from a state in R,_; by processing x;.
4. Accept (N, x) ifand only if R,, N F # @, which is if and only if N accepts x.

For each char i, step 3 runs in time at worst O(mz) (again, one can do better with smarter data

structures), so the whole time is O(mzn), which is polynomial in [{N, x)| = m+n.

(Non-)Emptiness Problems
This is the first of numerous problems in which the instance type is "Just a Machine."

NEpra:
INST: (The string code (M) of) ADFAM = (Q, X, 0,s,F).
QUES: Is L(M) # ©7?

The QUESTION is worded oppositely from the text's wording of Epg4, which we'll come to. Here is an
efficient decision procedure:

1. On input (M), treat M as a directed graph without caring about the character labels on arcs.
2. Execute a breadth-first search in that graph from the start node s of (the graph of) M.
3. If the search terminates having visited at least one state in F, accept (M), else reject.

The BFS in step 2 terminates---indeed, in time O(mz) at worst since the graph has m nodes. [Well, it

has O(m) edges, so you can get better time with random access to good data structures.] The



procedure is correct because if BFS finds a path from s to a state g in F, then the chars along that path
form a string in L(M), so L(M) # @.

The complementary problem ("E" for emptiness) is:

Epra:
INST: ADFAM = (Q, %, 6,5, F).
QUES: Is L(M) = @7

The solution is to use the same decision procedure, but switch the "accept" and "reject" cases:

1. On input (M), treat M as a directed graph without caring about the character labels on arcs.
2. Execute a breadth-first search in that graph from the start node s of (the graph of) M.
3. If the search terminates having visited at least one state in F, reject (M), else accept.

The corresponding problems for NFAs are just as easy: they have the same algorithms:

NENFa:
INST: AnNFA N = (Q, Z, 6,5, F).
QUES: Is L(N) # @7

Solution:
1. On input {N), treat N as a directed graph without caring about the character labels on arcs.
2. Execute a breadth-first search in that graph from the start node s of (the graph of) N.
3. If the search terminates having visited at least one state in F, accept (N), else reject.

This is BFS explicitly in the graph of N with node set Q. It is not the same as the BFS used to convert
an NFA into a DFA, which ran implicitly on the power set 29 of Q. Also "the same" is:

Enea:
INST: AnNFAN = (Q, X%, 6,3, F).
QUES: Is L(N) = @?

Solution: run the decision procedure for NExr4 but interchange the yes/no answers.

Now we consider a different kind of complementation:

ALLDFAZ
INSTADFAM = (Q, %, 6,s,F).
QUES: Is L(M) = X*?



Solution:
1. On input (M), form the complementary DFA M’ = (Q, X, 5,s, F’) with F* = Q\F.
2. Feed (M) to the decision procedure for Epr 4.
3. If that procedure accepts (M’), then accept (M), else reject (M).

This embodies what in Chapter 5 we will call a mapping reduction from ALLpr4 to Eppa. The
reduction and the whole procedure are correct because L(M) = X* < L(M’) = @.

This is not the same as the way we complemented NEpr4 to Epra, and the best way to see why it's
not so simple is to consider the analogous problem for NFAs.

ALLNFAZ
INST: AnNFAN = (Q, %, 5,s, F).
QUES: Is L(N) = Z*?

We can solve this by converting N into an equivalent DFA M and running the decider for ALLpr on
(M). But that can take exponential time. Can we use the same idea as for ALLpr4 of reducting to the
corresponding emptiness problem, Enr4, Which we solved just as efficiently as for Epra? The problem
is that we can't directly complement an NFA. Surely some other idea can help? The fact is, this
problem is NP-hard. Nobody (on Earth) knows a polynomial-time algorithm, and most (on Earth)
believe that no such algorithm exists.

Two-Machine Problems

Here the input w has type "Two Machines", meaning a pair (M1, M,). If the input w does not have this
pair form, it is rejected to begin with.

EQpra:
INST: Two DFAs M1 = (Ql,Z, 61,51,P1) and Mz = (QZ/Z/ 62, Sy, FZ)
QUES: Is L(Ml) = L(Mz)')

The fact that gives an efficient decision procedure is that two sets A and B are equal if and only if their
symmetric difference AAB = (A\B)U(B\ A) = (AUB)\ (AN B) isempty. The symmetric
difference is often written A @ B, with @ also used to mean XOR. Thus if we apply the Cartesian
product construction to M; and M, with XOR as the operation, to produce a DFA M3, then the answer
is yes if and only if L(M3) = @.

Solution:
1. Decode an input w = (M, M,) into DFAs M; and M,. (If w does not have that form, reject.)
2. Create the Cartesian product DFA M3 = (Qs3, X, 63, 53, F3) with
F3 = {(q1,92): 91 € F1 XOR q; € F»}.
3. Feed (M3) to the decision procedure for Epr 4, and accept (M7, M,) if and only if that accepts



(Ms3).

If m is the maximum of the number of states in Q1 and in Q,, then step 2 runs in O(mz) time (ignoring
the log m length of state labels). Step 3 is run on a quadratically bigger machine, so its own quadratic

time becomes O(m4) overall, but that's AOK---still polynomial in 7. But how about:

EQnra:
INST: Two NFAs N1 = (Ql,Z, 61,51,1:1) and N2 = (Qz,z, 62,52,1:2).
QUES: Is L(Nl) = L(N2)7

We can get a decision procedure by converting the NFAs into DFAs M; and M, and testing whether
L(My) = L(M,). For decidability purposes, that is all we need to say, but it is inefficient. Can't we
apply the Cartesian product idea directly to N; and N,? If the operation is intersection or union, this
makes a good self-study question, but for difference or symmetric difference/XOR, there is a clear
reason for doubt: If we could solve EQpra efficiently in general, then we could solve it efficiently in
cases where N is a fixed NFA that accepts all strings. Then we would have:

(N1,N3) € EQnra & (N1) € ALLNra.

But we have already asserted above that ALLyr4 is NP-hard. So this blocks the attempt to solve
EQnra, and in fact, this shows that the EQxr4 problem is NP-hard as well.

One can define all these problems when the givens are regular expressions or GNFAs rather than
DFAs or NFAs. The Sipser naming scheme will write the problems as EQ oo, Acnras ALLRegerys
NEcnra, and so on. They are all decidable because regular expressions and GNFAs are convertible
to NFAs and DFAs, but not always efficiently to the latter. Regular expressions and NFAs convert to
and from each other especially efficiently, and so the problems subscripted “Regexp“ have much the

same status as those subscripted ", ,". When we extend the problems to context-free grammars,
pushdown automata, and general (deterministic) Turing machines, however, we will "lose" a lot more.

We can frame the same kinds of problems to be about given Turing machines rather than finite
automata. E.g., in the same "Sipser-style" notation:

Ay (The "Acceptance Problem for Turing Machines")
INST: ADTM M = (Q, X, I',6, S, acc, Grej) @nd a string x € X~
QUES: Does M accept x?

Erm: (The "Emptiness Problem for Turing Machines")
INST: ADTMM = (Q,X,I,9, 5, qacc, qrej) .
QUES: Is L(M) = @?



