
CSE491/596 Lecture 10/6/23 Friday: Decidable and Undecidable Languages
 
The standard format for specifying decision problems came from a famous text by Michael Garey and 
David S. Johnson titled Computers and Intractability:
 
[Name of problem in small caps]
INSTANCE: [a description of the input(s) to the problem: strings, numbers, machines, graphs, etc.]
QUESTION: [a yes/no condition where yes means the input is accepted]
 
INSTANCE is also called INPUT; one can abbreviate it to INST and QUESTION to QUES.  The 
language of the problem is the set of valid instances for which the answer is yes.  Sometimes 
confusingly, the name of the problem usually doubles as the name of the language.  The Sipser text 
also established a standard scheme for naming various decision problems that arise with the various 
machine, regexp, and grammar classes in this subject.  It is best described by example.
 

:  (The "Acceptance Problem for DFAs")ADFA

INST: A DFA  and a string .  M = Q, 𝛴, 𝛿, s, F( ) x ∈ 𝛴
*

QUES: Does  accept ?M x
 
The input to a decision procedure for this problem is given in the form .  The language is⟨M, x⟩
 

.A  =  ⟨M, x⟩ : M is a DFA and M accepts xDFA { }

 
The length  of  can be reckoned as roughly of order  where  is the number of states in N ⟨M, x⟩ m + n m

 (note that the number of instructions for a DFA is  times  and we can treat  as a fixed Q m |𝛴| |𝛴|

constant such as ) and  as usual.  The alphabet of the  language can be reckoned as 2 n = |x| ADFA

ASCII or even as .  Here is a simple statement of an algorithm to solve the  problem:0, 1{ } ADFA

 
1. Given , first decode  and  individually.  (If not possible, reject.)⟨M, x⟩ M x

2. Run  (using a simulator like the Turing Kit) until the DFA reaches the end of .M x( ) x

3. Accept  if  accepted , else halt and reject .⟨M, x⟩ M x ⟨M, x⟩
 
This pseudocode always halts because a DFA  always halts.  To simulate a step of  takes time M M x( )

at most order- ; really it can be  time per step using good data structures (mainly being able m O m(log )

to assign a pointer to the destination state in any executed instruction).  So the running time is  O mn( )

which gives time  taking the length  into account.  Thus we can say:O N2 N = |⟨M, x⟩|

 
• The algorithm is a decision procedure to solve the  problem.ADFA

• Hence the  problem and the  language are called decidable.ADFA ADFA

• In fact, they are decidable in polynomial time.
 
Now suppose we have an NFA in place of the DFA.

 

 



 
:  (The "Acceptance Problem for NFAs")ANFA

INST: An NFA  and a string .  N = Q, 𝛴, 𝛿, s, F( ) x ∈ 𝛴
*

QUES: Does  accept ?N x
 
The following qualifies as a decision procedure, albeit highly inefficient:

1. Given , first decode  and  individually.⟨N, x⟩ N x

2. Convert  into an equivalent DFA .N M

3. Then run the decision procedure for  on  and give the same yes/no answer.ADFA ⟨M, x⟩

 
Step 3 will later be called reducing the (instance of the) latter problem to the (equivalent "mapped" 
instance of the) former problem.  But step 2 makes this an inefficient reduction---it can require order-of 

 time where we are now calling  the number of states in .  Then again, step 2 does always halt, 2m m N
so if halting is all you care about, it goes as a decision procedure.  But faster is:
 

1. Given , first decode  and  individually.⟨N, x⟩ N x

2. Initialize  to be the -closure of the start state of .R0 𝜖 N

3. For each char  of , build the set  of states reachable from a state in  by processing .xi x Ri Ri-1 xi

4. Accept  if and only if , which is if and only if  accepts .⟨N, x⟩ R ∩ F ≠ ∅n N x
 
For each char , step 3 runs in time at worst  (again, one can do better with smarter data i O m2

structures), so the whole time is , which is polynomial in .  O m n2 |⟨N, x⟩| ≈  m + n

 
 
(Non-)Emptiness Problems
 
This is the first of numerous problems in which the instance type is "Just a Machine."
 

:NEDFA

INST: (The string code  of) A DFA .⟨M⟩ M = Q, 𝛴, 𝛿, s, F( )

QUES: Is ?L M ≠ ∅( )
 
The QUESTION is worded oppositely from the text's wording of , which we'll come to.  Here is an EDFA

efficient decision procedure:
 

1. On input , treat  as a directed graph without caring about the character labels on arcs.⟨M⟩ M

2. Execute a breadth-first search in that graph from the start node  of (the graph of) .s M

3. If the search terminates having visited at least one state in , accept , else reject.F ⟨M⟩

 
The BFS in step  terminates---indeed, in time  at worst since the graph has  nodes.  [Well, it 2 O m2 m

has  edges, so you can get better time with random access to good data structures.]  The O m( )

 

 



procedure is correct because if BFS finds a path from  to a state  in , then the chars along that path s q F

form a string in , so .L M( ) L M ≠ ∅( )
 
The complementary problem (" " for emptiness) is:E
 

:EDFA

INST: A DFA .M = Q, 𝛴, 𝛿, s, F( )

QUES: Is ?L M = ∅( )
 
The solution is to use the same decision procedure, but switch the "accept" and "reject" cases:
 

1. On input , treat  as a directed graph without caring about the character labels on arcs.⟨M⟩ M

2. Execute a breadth-first search in that graph from the start node  of (the graph of) .s M

3. If the search terminates having visited at least one state in , reject , else accept.F ⟨M⟩

 
The corresponding problems for NFAs are just as easy: they have the same algorithms:
 

:NENFA

INST: An NFA .N = Q, 𝛴, 𝛿, s, F( )

QUES: Is ?L N ≠ ∅( )
 
Solution:

1. On input , treat  as a directed graph without caring about the character labels on arcs.⟨N⟩ N

2. Execute a breadth-first search in that graph from the start node  of (the graph of) .s N

3. If the search terminates having visited at least one state in , accept , else reject.F ⟨N⟩

 
This is BFS explicitly in the graph of  with node set .  It is not the same as the BFS used to convert N Q

an NFA into a DFA, which ran implicitly on the power set  of .  Also "the same" is:2Q Q
 

:ENFA

INST: An NFA .N = Q, 𝛴, 𝛿, s, F( )

QUES: Is ?L N = ∅( )
 
Solution: run the decision procedure for  but interchange the yes/no answers.NENFA

 
 
Now we consider a different kind of complementation:
 

:ALLDFA

INST: A DFA .M = Q, 𝛴, 𝛿, s, F( )

QUES: Is ?L M = 𝛴( ) *

 

 



 
Solution:

1. On input , form the complementary DFA  with .⟨M⟩ M' = Q, 𝛴, 𝛿, s, F'( ) F' =  Q ⧵ F

2. Feed  to the decision procedure for .⟨M'⟩ EDFA

3. If that procedure accepts , then accept , else reject .⟨M'⟩ ⟨M⟩ ⟨M⟩

 
This embodies what in Chapter 5 we will call a mapping reduction from  to .  The ALLDFA EDFA

reduction and the whole procedure are correct because .L M = 𝛴  ⟺  L M' = ∅( ) * ( )
 
This is not the same as the way we complemented  to , and the best way to see why it's NEDFA EDFA

not so simple is to consider the analogous problem for NFAs.
 

:ALLNFA

INST: An NFA .N = Q, 𝛴, 𝛿, s, F( )

QUES: Is ?L N = 𝛴( ) *

 
We can solve this by converting  into an equivalent DFA  and running the decider for  on N M ALLDFA

.  But that can take exponential time.  Can we use the same idea as for  of reducting to the ⟨M⟩ ALLDFA

corresponding emptiness problem, , which we solved just as efficiently as for ?  The problem ENFA EDFA

is that we can't directly complement an NFA.  Surely some other idea can help?  The fact is, this 
problem is -hard.  Nobody (on Earth) knows a polynomial-time algorithm, and most (on Earth) NP

believe that no such algorithm exists.
 
Two-Machine Problems
 
Here the input  has type "Two Machines", meaning a pair .  If the input  does not have this w ⟨M , M ⟩1 2 w

pair form, it is rejected to begin with.  
 

:EQDFA

INST: Two DFAs  and .M = Q , 𝛴, 𝛿 , s , F1 ( 1 1 1 1) M = Q , 𝛴, 𝛿 , s , F2 ( 2 2 2 2)

QUES: Is ?L M = L M( 1) ( 2)

 
The fact that gives an efficient decision procedure is that two sets  and  are equal if and only if their A B

symmetric difference  is empty.  The symmetric A △ B =  A ⧵ B ∪ B ⧵A  =  A∪ B ⧵ A∩ B( ) ( ) ( ) ( )

difference is often written , with  also used to mean XOR.  Thus if we apply the Cartesian A⊕ B ⊕

product construction to  and  with XOR as the operation, to produce a DFA , then the answer M1 M2 M3

is yes if and only if .L M = ∅( 3)
 
Solution:

1. Decode a given input string  into DFAs  and .  (If  does not have that w = ⟨M , M ⟩1 2 M1 M2 w

form, reject.)

 

 



2. Create the Cartesian product DFA  with M = Q , 𝛴, 𝛿 , s , F3 ( 3 3 3 3)

.F  =  q , q :  q ∈ F  XOR q ∈ F3 {( 1 2) 1 1 2 2 }

3. Feed  to the decision procedure for , and accept  if and only if that accepts ⟨M ⟩3 EDFA ⟨M , M ⟩1 2

.⟨M ⟩3

 
If  is the maximum of the number of states in  and in , then step  runs in  time (ignoring m Q1 Q2 2 O m2

the  length of state labels).  Step 3 is run on a quadratically bigger machine, so its own quadratic mlog

time becomes  overall, but that's AOK---still polynomial in .  But how about:O m4 m

 
:EQNFA

INST: Two NFAs  and .N = Q , 𝛴, 𝛿 , s , F1 ( 1 1 1 1) N = Q , 𝛴, 𝛿 , s , F2 ( 2 2 2 2)

QUES: Is ?L N = L N( 1) ( 2)

 
We can get a decision procedure by converting the NFAs into DFAs  and  and testing whether M1 M2

.  For decidability purposes, that is all we need to say, but it is inefficient.  Can't we L M = L M( 1) ( 2)

apply the Cartesian product idea directly to  and ?  If the operation is intersection or union, this N1 N2

makes a good self-study question, but for difference or symmetric difference/XOR, there is a clear 
reason for doubt:  If we could solve  efficiently in general, then we could solve it efficiently in EQNFA

cases where  is a fixed NFA that accepts all strings.  Then we would have:N2

 
 .⟨N , N ⟩ ∈  EQ  ⟺  ⟨N ⟩ ∈  ALL1 2 NFA 1 NFA

 
But we have already asserted above that  is -hard.  So this blocks the attempt to solve ALLNFA NP

, and in fact, this shows that the  problem is -hard as well.EQNFA EQNFA NP

 
One can define all these problems when the givens are regular expressions or GNFAs rather than 
DFAs or NFAs.  The Sipser naming scheme will write the problems as , , , EQRegexp AGNFA ALLRegexp

, and so on.  They are all decidable because regular expressions and GNFAs are convertible NEGNFA

to NFAs and DFAs, but not always efficiently to the latter.  Regular expressions and NFAs convert to 
and from each other especially efficiently, and so the problems subscripted " " have much the Regexp

same status as those subscripted " ".  NFA

 
 
Undecidable Languages
 
Define .  Note that the case , that is,  not D  =  ⟨M⟩ :  M does not accept ⟨M⟩  TM { } M ⟨M⟩ ↑( ) M

halting on its own code, counts as  being in the language even though you can't immediately ⟨M⟩ DTM

"register" that condition.  
 
Theorem: The language  is not c.e.---that is, there does not exist a TM  such that .DTM Q L Q  =  D( ) TM

 

 

 



I am using the letter  in a new way, to refer to a whole machine rather than its set of states, in order to Q
reinforce the point that this machine does not actually exist although the proof involves talking about it 
as if it did.  We can say  is quixotic, after Don Quixote.Q
 
Proof.  Suppose such a  existed.  Then it would have a string code .  Then we could run  Q q =  ⟨Q⟩ Q

on input .  The logical analysis of that run, on hypothesis , is:q L Q  =  D( ) TM

 
                          by Q accepts q ⟺    q is in DTM L Q  =  D( ) TM

                                    by definition of .⟺ Q does not accept q q ∈  DTM

 
The analysis makes a statement equivalent to its negation, which is a "logical rollback" condition.  The 
rollback goes all the way to the first sentence of the proof.  So such a  cannot exist. Q ☒
 
It is worth reworking this proof in several ways.  One is to follow the chain of implications in both 
directions like a cat chasing its tail.  Another is to use the recursive enumeration  of M , M , M , …0 1 2

DTMs, that is, to treat their codes as "Gödel Numbers."  Then the definition looks like:
 

}.D  =  i :  i ∉  L MTM { ( i)
 
The proof then goes: if  existed, it would equal  for some number .  But then  accepts ... Q Mq q Q q ⟺

as above.  
 
We compare with an abstract proof about sets.  Consider functions  whose arguments belong to a set f

 and whose outputs are subsets of .  The  function from an NFA becomes such a function A A p, c𝛿( )

when you fix the char .  Thus we write  where  denotes the power set.  Then  being c f :  A P A→ ( ) P f

onto would mean that every subset of  is a value of  on some argument(s).  But we have:A f
 
Theorem: No function  can ever be onto .f :  A P A→ ( ) P A( )
 
Proof: Suppose we had such an  and .  Then we would have the subsetA f
 

.D  =  a ∈  A :  a is not in the set f a{ ( )}
 
By  being onto, there would exist  such that .  But then:f d ∈  A f d  =  D( )
 
                    by d ∈  D ⟺  d is in the set f d( ) f d  =  D( )

                            by definition of .⟺ d is not in the set f d( ) d ∈  D
 
The contradiction rolls back to the beginning, so there cannot be such an  and . A f ☒
 
When  is a finite set, this is obvious just by counting.  Suppose .  Then there are A A =  1, 2, 3, 4, 5{ }

 subsets but only  elements of  to go around.  As the size of  increases this becomes 2  =  325 5 A A

 

 



"more and more obvious."  The historical kicker is that the proof works even when  is infinite.  Georg A

Cantor gave ironclad criteria by which it follows that  always has higher cardinality than .  In the P A( ) A

case where  or  this tells us that the set of all languages has higher cardinality than A =  N A =  𝛴*

, i.e., is not countably infinite.  Because we have only countably many (string codes or Gödel A
numbers of) Turing machines, this is an "existence proof" that many languages don't have machines.  
The function  cannot be onto .f ⟨M⟩  =  L M( ) ( ) P 𝛴

*

 
[Many sources give the illustration where the real numbers  are used in place of .  There is a R P 𝛴

*

nagging technical issue that two different decimal or binary expansions like  and  0.01111... 0.1000...
can denote the same number (0.5 in this case) but in decimal one can avoid it.  The real number that is 
"not counted" is pictured by going down the main diagonal of an infinite square grid, hence the name 
diagonalization for the whole idea.  But I like to do without it.]
 
Yet another variation is to define  with regard to other progarmming formalisms besides Turing D
machines, for instance:
 

System.exit(0) .D = p :  p compiles in Java to a program P such that P p  does not execute Java { ( ) }

 
If  were c.e. then by the equivalence of Java and TMs, there would be a Java program  such DJava Q

that  (where acceptance means exiting normally).  Then  would have a valid code  L Q  =  D( ) Java Q q

that compiles to  and ... the logic is the same as before.Q
 
One nice aspect of Gödel Numbers is that you don't have to worry about strings that are not valid 
codes.  So if we define

}D =  D  =  i :  i ∉  L MTM { ( i)

} = K =  K  =  i :  i ∈  L MTM { ( i) i :  ⟨M , i⟩ ∈  A{ i TM }
 
then  is literally the complement of .  Now we can label our basic "class diagram" from before KTM DTM

a little further, populating it with some languages:
 

 

 

REC

RE co-RE

neither c.e. nor co-c.e.

This diagram conveys some extra information:
 is closed under complements, ◎ REC

, and◎ RE ∩  co - RE =  REC

 All three classes are closed downward under◎

     computable many-one/mapping reductions.

DK
ATM


