CSE491/596 Lecture 10/6/23 Friday: Decidable and Undecidable Languages

The standard format for specifying decision problems came from a famous text by Michael Garey and David S. Johnson titled Computers and Intractability:
[Name of problem in small caps]
INSTANCE: [a description of the input(s) to the problem: strings, numbers, machines, graphs, etc.] QUESTION: [a yes/no condition where yes means the input is accepted]

INSTANCE is also called INPUT; one can abbreviate it to INST and QUESTION to QUES. The language of the problem is the set of valid instances for which the answer is yes. Sometimes confusingly, the name of the problem usually doubles as the name of the language. The Sipser text also established a standard scheme for naming various decision problems that arise with the various machine, regexp, and grammar classes in this subject. It is best described by example.

$A_{D F A}$: (The "Acceptance Problem for DFAs")

INST: A DFA $M=(Q, \Sigma, \delta, s, F)$ and a string $x \in \Sigma^{*}$.
QUES: Does M accept x ?

The input to a decision procedure for this problem is given in the form $\langle M, x\rangle$. The language is

$$
A_{D F A}=\{\langle M, x\rangle: M \text { is } a D F A \text { and } M \text { accepts } x\} .
$$

The length N of $\langle M, x\rangle$ can be reckoned as roughly of order $m+n$ where m is the number of states in Q (note that the number of instructions for a DFA is m times $|\Sigma|$ and we can treat $|\Sigma|$ as a fixed constant such as 2) and $n=|x|$ as usual. The alphabet of the $A_{D F A}$ language can be reckoned as ASCII or even as $\{0,1\}$. Here is a simple statement of an algorithm to solve the $A_{D F A}$ problem:

1. Given $\langle M, x\rangle$, first decode M and x individually. (If not possible, reject.)
2. Run $M(x)$ (using a simulator like the Turing Kit) until the DFA reaches the end of x.
3. Accept $\langle M, x\rangle$ if M accepted x, else halt and reject $\langle M, x\rangle$.

This pseudocode always halts because a DFA M always halts. To simulate a step of $M(x)$ takes time at most order- m; really it can be $O(\log m)$ time per step using good data structures (mainly being able to assign a pointer to the destination state in any executed instruction). So the running time is $O(m n)$ which gives time $O\left(N^{2}\right)$ taking the length $N=|\langle M, x\rangle|$ into account. Thus we can say:

- The algorithm is a decision procedure to solve the $A_{D F A}$ problem.
- Hence the $A_{D F A}$ problem and the $A_{D F A}$ language are called decidable.
- In fact, they are decidable in polynomial time.

Now suppose we have an NFA in place of the DFA.

$A_{\text {NFA }}$: (The "Acceptance Problem for NFAs")

INST: An NFA $N=(Q, \Sigma, \delta, s, F)$ and a string $x \in \Sigma^{*}$.
QUES: Does N accept x ?

The following qualifies as a decision procedure, albeit highly inefficient:

1. Given $\langle N, x\rangle$, first decode N and x individually.
2. Convert N into an equivalent DFA M.
3. Then run the decision procedure for $A_{D F A}$ on $\langle M, x\rangle$ and give the same yes/no answer.

Step 3 will later be called reducing the (instance of the) latter problem to the (equivalent "mapped" instance of the) former problem. But step 2 makes this an inefficient reduction---it can require order-of 2^{m} time where we are now calling m the number of states in N. Then again, step 2 does always halt, so if halting is all you care about, it goes as a decision procedure. But faster is:

1. Given $\langle N, x\rangle$, first decode N and x individually.
2. Initialize R_{0} to be the ϵ-closure of the start state of N.
3. For each char x_{i} of x, build the set R_{i} of states reachable from a state in R_{i-1} by processing x_{i}.
4. Accept $\langle N, x\rangle$ if and only if $R_{n} \cap F \neq \varnothing$, which is if and only if N accepts x.

For each char i, step 3 runs in time at worst $O\left(m^{2}\right)$ (again, one can do better with smarter data structures), so the whole time is $O\left(m^{2} n\right)$, which is polynomial in $|\langle N, x\rangle| \approx m+n$.

(Non-)Emptiness Problems

This is the first of numerous problems in which the instance type is "Just a Machine."
$N E_{D F A}$:
INST: (The string code $\langle M\rangle$ of) A DFA $M=(Q, \Sigma, \delta, s, F)$.
QUES: Is $L(M) \neq \varnothing$?

The QUESTION is worded oppositely from the text's wording of $E_{D F A}$, which we'll come to. Here is an efficient decision procedure:

1. On input $\langle M\rangle$, treat M as a directed graph without caring about the character labels on arcs.
2. Execute a breadth-first search in that graph from the start node s of (the graph of) M.
3. If the search terminates having visited at least one state in F, accept $\langle M\rangle$, else reject.

The BFS in step 2 terminates---indeed, in time $O\left(m^{2}\right)$ at worst since the graph has m nodes. [Well, it has $O(m)$ edges, so you can get better time with random access to good data structures.] The
procedure is correct because if BFS finds a path from s to a state q in F, then the chars along that path form a string in $L(M)$, so $L(M) \neq \varnothing$.

The complementary problem (" E " for emptiness) is:

$E_{D F A}$:

INST: A DFA $M=(Q, \Sigma, \delta, s, F)$.
QUES: Is $L(M)=\varnothing$?

The solution is to use the same decision procedure, but switch the "accept" and "reject" cases:

1. On input $\langle M\rangle$, treat M as a directed graph without caring about the character labels on arcs.
2. Execute a breadth-first search in that graph from the start node s of (the graph of) M.
3. If the search terminates having visited at least one state in F, reject $\langle M\rangle$, else accept.

The corresponding problems for NFAs are just as easy: they have the same algorithms:
$N E_{N F A}$:
INST: An NFA $N=(Q, \Sigma, \delta, s, F)$.
QUES: Is $L(N) \neq \varnothing$?

Solution:

1. On input $\langle N\rangle$, treat N as a directed graph without caring about the character labels on arcs.
2. Execute a breadth-first search in that graph from the start node s of (the graph of) N.
3. If the search terminates having visited at least one state in F, accept $\langle N\rangle$, else reject.

This is BFS explicitly in the graph of N with node set Q. It is not the same as the BFS used to convert an NFA into a DFA, which ran implicitly on the power set 2^{Q} of Q. Also "the same" is:

$E_{N F A}$:

INST: An NFA $N=(Q, \Sigma, \delta, s, F)$.
QUES: Is $L(N)=\varnothing$?

Solution: run the decision procedure for $N E_{N F A}$ but interchange the yes/no answers.

Now we consider a different kind of complementation:

$A L L_{D F A}$:

INST: A DFA $M=(Q, \Sigma, \delta, s, F)$.
QUES: Is $L(M)=\Sigma^{*}$?

Solution:

1. On input $\langle M\rangle$, form the complementary DFA $M^{\prime}=\left(Q, \Sigma, \delta, s, F^{\prime}\right)$ with $F^{\prime}=Q \backslash F$.
2. Feed $\left\langle M^{\prime}\right\rangle$ to the decision procedure for $E_{D F A}$.
3. If that procedure accepts $\left\langle M^{\prime}\right\rangle$, then accept $\langle M\rangle$, else reject $\langle M\rangle$.

This embodies what in Chapter 5 we will call a mapping reduction from $A L L_{D F A}$ to $E_{D F A}$. The reduction and the whole procedure are correct because $L(M)=\Sigma^{*} \Longleftrightarrow L\left(M^{\prime}\right)=\varnothing$.

This is not the same as the way we complemented $N E_{D F A}$ to $E_{D F A}$, and the best way to see why it's not so simple is to consider the analogous problem for NFAs.

$A L L_{\text {NFA }}$:

INST: An NFA $N=(Q, \Sigma, \delta, s, F)$.
QUES: Is $L(N)=\Sigma^{*}$?

We can solve this by converting N into an equivalent DFA M and running the decider for $A L L_{D F A}$ on $\langle M\rangle$. But that can take exponential time. Can we use the same idea as for $A L L_{D F A}$ of reducting to the corresponding emptiness problem, $E_{N F A}$, which we solved just as efficiently as for $E_{D F A}$? The problem is that we can't directly complement an NFA. Surely some other idea can help? The fact is, this problem is NP-hard. Nobody (on Earth) knows a polynomial-time algorithm, and most (on Earth) believe that no such algorithm exists.

Two-Machine Problems

Here the input w has type "Two Machines", meaning a pair $\left\langle M_{1}, M_{2}\right\rangle$. If the input w does not have this pair form, it is rejected to begin with.

$E Q_{D F A}:$

INST: Two DFAs $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$.
QUES: Is $L\left(M_{1}\right)=L\left(M_{2}\right)$?

The fact that gives an efficient decision procedure is that two sets A and B are equal if and only if their symmetric difference $A \Delta B=(A \backslash B) \cup(B \backslash A)=(A \cup B) \backslash(A \cap B)$ is empty. The symmetric difference is often written $A \oplus B$, with \oplus also used to mean XOR. Thus if we apply the Cartesian product construction to M_{1} and M_{2} with XOR as the operation, to produce a DFA M_{3}, then the answer is yes if and only if $L\left(M_{3}\right)=\varnothing$.

Solution:

1. Decode a given input string $w=\left\langle M_{1}, M_{2}\right\rangle$ into DFAs M_{1} and M_{2}. (If w does not have that form, reject.)
2. Create the Cartesian product DFA $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, s_{3}, F_{3}\right)$ with $F_{3}=\left\{\left(q_{1}, q_{2}\right): q_{1} \in F_{1}\right.$ XOR $\left.q_{2} \in F_{2}\right\}$.
3. Feed $\left\langle M_{3}\right\rangle$ to the decision procedure for $E_{D F A}$, and accept $\left\langle M_{1}, M_{2}\right\rangle$ if and only if that accepts $\left\langle M_{3}\right\rangle$.

If m is the maximum of the number of states in Q_{1} and in Q_{2}, then step 2 runs in $O\left(m^{2}\right)$ time (ignoring the $\log m$ length of state labels). Step 3 is run on a quadratically bigger machine, so its own quadratic time becomes $O\left(m^{4}\right)$ overall, but that's AOK---still polynomial in m. But how about:

$E Q_{N F A}$:

INST: Two NFAs $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$.
QUES: Is $L\left(N_{1}\right)=L\left(N_{2}\right)$?

We can get a decision procedure by converting the NFAs into DFAs M_{1} and M_{2} and testing whether $L\left(M_{1}\right)=L\left(M_{2}\right)$. For decidability purposes, that is all we need to say, but it is inefficient. Can't we apply the Cartesian product idea directly to N_{1} and N_{2} ? If the operation is intersection or union, this makes a good self-study question, but for difference or symmetric difference/XOR, there is a clear reason for doubt: If we could solve $E Q_{N F A}$ efficiently in general, then we could solve it efficiently in cases where N_{2} is a fixed NFA that accepts all strings. Then we would have:

$$
\left\langle N_{1}, N_{2}\right\rangle \in E Q_{N F A} \Longleftrightarrow\left\langle N_{1}\right\rangle \in A L L_{N F A}
$$

But we have already asserted above that $A L L_{N F A}$ is NP-hard. So this blocks the attempt to solve $E Q_{N F A}$, and in fact, this shows that the $E Q_{N F A}$ problem is NP-hard as well.

One can define all these problems when the givens are regular expressions or GNFAs rather than DFAs or NFAs. The Sipser naming scheme will write the problems as $E Q_{\text {Regexp }}, A_{G N F A}, A L L_{\text {Regexp }}$, $N E_{G N F A}$, and so on. They are all decidable because regular expressions and GNFAs are convertible to NFAs and DFAs, but not always efficiently to the latter. Regular expressions and NFAs convert to and from each other especially efficiently, and so the problems subscripted "Regexp" have much the same status as those subscripted " ${ }_{N F A}$ ".

Undecidable Languages

Define $D_{T M}=\{\langle M\rangle: M$ does not accept $\langle M\rangle\}$. Note that the case $M(\langle M\rangle) \uparrow$, that is, M not halting on its own code, counts as $\langle M\rangle$ being in the language $D_{T M}$ even though you can't immediately "register" that condition.

Theorem: The language $D_{T M}$ is not c.e.---that is, there does not exist a TM Q such that $L(Q)=D_{T M}$.

I am using the letter Q in a new way, to refer to a whole machine rather than its set of states, in order to reinforce the point that this machine does not actually exist although the proof involves talking about it as if it did. We can say Q is quixotic, after Don Quixote.

Proof. Suppose such a Q existed. Then it would have a string code $q=\langle Q\rangle$. Then we could run Q on input q. The logical analysis of that run, on hypothesis $L(Q)=D_{T M}$, is:

$$
\begin{aligned}
Q \text { accepts } q & \Longleftrightarrow q \text { is in } D_{T M} & & \text { by } L(Q)=D_{T M} \\
& \Longleftrightarrow Q \text { does not accept } q & & \text { by definition of } q \in D_{T M} .
\end{aligned}
$$

The analysis makes a statement equivalent to its negation, which is a "logical rollback" condition. The rollback goes all the way to the first sentence of the proof. So such a Q cannot exist. $\mathbb{}$

It is worth reworking this proof in several ways. One is to follow the chain of implications in both directions like a cat chasing its tail. Another is to use the recursive enumeration $M_{0}, M_{1}, M_{2}, \ldots$ of DTMs, that is, to treat their codes as "Gödel Numbers." Then the definition looks like:

$$
D_{T M}=\left\{i: i \notin L\left(M_{i}\right)\right\} .
$$

The proof then goes: if Q existed, it would equal M_{q} for some number q. But then Q accepts $q \Longleftrightarrow \ldots$ as above.

We compare with an abstract proof about sets. Consider functions f whose arguments belong to a set A and whose outputs are subsets of A. The $\underline{\delta}(p, c)$ function from an NFA becomes such a function when you fix the char c. Thus we write $f: A \rightarrow \mathcal{P}(A)$ where \mathcal{P} denotes the power set. Then f being onto would mean that every subset of A is a value of f on some $\operatorname{argument(s).~But~we~have:~}$

Theorem: No function $f: A \rightarrow \mathcal{P}(A)$ can ever be onto $\mathcal{P}(A)$.

Proof: Suppose we had such an A and f. Then we would have the subset

$$
D=\{a \in A: a \text { is not in the set } f(a)\} .
$$

By f being onto, there would exist $d \in A$ such that $f(d)=D$. But then:

$$
\begin{aligned}
d \in D & \Longleftrightarrow d \text { is in the set } f(d) & & \text { by } f(d)=D \\
& \Longleftrightarrow d \text { is not in the set } f(d) & & \text { by definition of } d \in D .
\end{aligned}
$$

The contradiction rolls back to the beginning, so there cannot be such an A and f. \boxtimes
When A is a finite set, this is obvious just by counting. Suppose $A=\{1,2,3,4,5\}$. Then there are $2^{5}=32$ subsets but only 5 elements of A to go around. As the size of A increases this becomes
"more and more obvious." The historical kicker is that the proof works even when A is infinite. Georg Cantor gave ironclad criteria by which it follows that $\mathcal{P}(A)$ always has higher cardinality than A. In the case where $A=\mathbb{N}$ or $A=\Sigma^{*}$ this tells us that the set of all languages has higher cardinality than A, i.e., is not countably infinite. Because we have only countably many (string codes or Gödel numbers of) Turing machines, this is an "existence proof" that many languages don't have machines. The function $f(\langle M\rangle)=L(M)$ cannot be onto $\mathcal{P}\left(\Sigma^{*}\right)$.
[Many sources give the illustration where the real numbers \mathbb{R} are used in place of $\mathcal{P}\left(\Sigma^{*}\right)$. There is a nagging technical issue that two different decimal or binary expansions like 0.01111... and 0.1000... can denote the same number (0.5 in this case) but in decimal one can avoid it. The real number that is "not counted" is pictured by going down the main diagonal of an infinite square grid, hence the name diagonalization for the whole idea. But I like to do without it.]

Yet another variation is to define D with regard to other progarmming formalisms besides Turing machines, for instance:
$D_{\text {Java }}=\{p: p$ compiles in Java to a program P such that $P(p)$ does not execute system.exit(0) $\}$.

If $D_{\text {Java }}$ were c.e. then by the equivalence of Java and TMs, there would be a Java program Q such that $L(Q)=D_{\text {Java }}$ (where acceptance means exiting normally). Then Q would have a valid code q that compiles to Q and ... the logic is the same as before.

One nice aspect of Gödel Numbers is that you don't have to worry about strings that are not valid codes. So if we define

$$
\begin{gathered}
D=D_{T M}=\left\{i: i \notin L\left(M_{i}\right)\right\} \\
K=K_{T M}=\left\{i: i \in L\left(M_{i}\right)\right\}=\left\{i:\left\langle M_{i}, i\right\rangle \in A_{T M}\right\}
\end{gathered}
$$

then $K_{T M}$ is literally the complement of $D_{T M}$. Now we can label our basic "class diagram" from before a little further, populating it with some languages:
neither c.e. nor co-c.e.

This diagram conveys some extra information:
(O) REC is closed under complements,
() RE \cap co-RE $=$ REC, and
© All three classes are closed downward under computable many-one/mapping reductions.

