
CSE491/596 Lecture Mon. Oct. 9, 2023:  Undecidable Languages
 
First, a portion of notes I skipped over when doing the Friday 10/06/23 lecture afresh from overhead 
projector drawings: The most basic kind of problems about automata or programs is whether they 
accept a given input.  Here is the Sipser naming scheme exemplified for DFAs:
 

:  (The "Acceptance Problem for DFAs")ADFA

INST: A DFA  and a string .  M = Q, 𝛴, 𝛿, s, F( ) x ∈ 𝛴
*

QUES: Does  accept ?M x
 
The input to a decision procedure for this problem is given in the form .  The language is⟨M, x⟩
 

.A  =  ⟨M, x⟩ : M is a DFA and M accepts xDFA { }

 
The length  of  can be reckoned as roughly of order  where  is the number of states in N ⟨M, x⟩ m + n m

 (note that the number of instructions for a DFA is  times  and we can treat  as a fixed Q m |𝛴| |𝛴|

constant such as ) and  as usual.  The alphabet of the  language can be reckoned as 2 n = |x| ADFA

ASCII or even as .  Here is a simple statement of an algorithm to solve the  problem---you 0, 1{ } ADFA

could summarize it as "Just Do It":
 

1. Given , first decode  and  individually.  (If not possible, reject.)⟨M, x⟩ M x

2. Run  (using a simulator like the Turing Kit) until the DFA reaches the end of .M x( ) x

3. Accept  if  accepted , else halt and reject .⟨M, x⟩ M x ⟨M, x⟩
 
This pseudocode always halts because a DFA  always halts.  To simulate a step of  takes time M M x( )

at most order- ; really it can be  time per step using good data structures (mainly being able m O m(log )

to assign a pointer to the destination state in any executed instruction).  So the running time is  O mn( )

which gives time  taking the length  into account.  Thus we can say:O N2 N = |⟨M, x⟩|

 
• The algorithm is a decision procedure to solve the  problem.ADFA

• Hence the  problem and the  language are called decidable.ADFA ADFA

• In fact, they are decidable in polynomial time.
 
Now suppose we have an NFA in place of the DFA.
 

:  (The "Acceptance Problem for NFAs")ANFA

INST: An NFA  and a string .  N = Q, 𝛴, 𝛿, s, F( ) x ∈ 𝛴
*

QUES: Does  accept ?N x
 
The following qualifies as a decision procedure, albeit highly inefficient:

1. Given , first decode  and  individually.⟨N, x⟩ N x

 

 



2. Convert  into an equivalent DFA .N M

3. Then run the decision procedure for  on  and give the same yes/no answer.ADFA ⟨M, x⟩

 
But step 2 makes this an inefficient reduction---it can require order-of  time where we are now calling 2m

 the number of states in .  Then again, step 2 does always halt, so if halting is all you care about, it m N
goes as a decision procedure.  But faster is:
 

1. Given , first decode  and  individually.⟨N, x⟩ N x

2. Initialize  to be the -closure of the start state of .R0 𝜖 N

3. For each char  of , build the set  of states reachable from a state in  by processing .xi x Ri Ri-1 xi

4. Accept  if and only if , which is if and only if  accepts .⟨N, x⟩ R ∩ F ≠ ∅n N x
 
For each char , step 3 runs in time at worst  (again, one can do better with smarter data i O m2

structures), so the whole time is , which is polynomial in .  O m n2 |⟨N, x⟩| ≈  m + n

 
Now how about the same kind of problem for Turing machines?  We presume deterministic ones:
 

:  (The "Acceptance Problem for Turing Machines"---default is deterministic)ATM

INST: A DTM  and a string .  M = Q, 𝛴, 𝛤, 𝛿, _, s, q , q( acc rej) x ∈ 𝛴
*

QUES: Does  accept ?M x
 
Is this decidable?  What if we just run  on ?  It is deterministic after all.  But it might not halt...  M x

Another question is whether the language  is computably enumerable.A = ⟨M, x⟩ :  x ∈  L MTM ( )}
 
 
The Diagonal Language---and the Problem It Causes
 
Define .  That is, D  =  ⟨M⟩ :  M does not accept ⟨M⟩  TM { } ⟨M⟩ :  ⟨M, M⟩ ∉ A .{ TM }
 
There is a notation for the language of machines that do accept their own code:
 

.  That is, K  =  ⟨M⟩ :  M does accept ⟨M⟩  TM { } ⟨M⟩ :  ⟨M, M⟩ ∈ A .{ TM }

 
Note that the case , that is,  not halting on its own code, counts as  being in the M ⟨M⟩ ↑( ) M ⟨M⟩

language even though you can't immediately "register" that condition.  DTM

 
Theorem: The language  is not c.e.---that is, there does not exist a TM  such that .DTM Q L Q  =  D( ) TM

 
I am using the letter  in a new way, to refer to a whole machine rather than its set of states, in order to Q
reinforce the point that this machine does not actually exist although the proof involves talking about it 
as if it did.  We can say  is quixotic, after Don Quixote.Q

 

 



 
Proof.  Suppose such a  existed.  Then it would have a string code .  Then we could run  Q q =  ⟨Q⟩ Q

on input .  The logical analysis of that run, on hypothesis , is:q L Q  =  D( ) TM

 
                          by Q accepts q ⟺    q is in DTM L Q  =  D( ) TM

                                    by definition of .⟺ Q does not accept q q ∈  DTM

 
The analysis makes a statement equivalent to its negation, which is a "logical rollback" condition.  The 
rollback goes all the way to the first sentence of the proof.  So such a  cannot exist. Q ☒
 
D  =  q :  Q does not accept q where q = ⟨Q⟩  TM { }

 
The view this "in reverse": Suppose .  Since , this means  does not Q does not accept q q = ⟨Q⟩ Q

accept its own code .  This means in turn that , i.e., , belongs to the  language.  But if we ⟨Q⟩ ⟨Q⟩ q DTM

maintain that , then  must accept  after all.  This is a contradiction.L Q  =  D( ) TM Q q

 
It is worth reworking this proof in several ways.  One is to follow the chain of implications in both 
directions like a cat chasing its tail.  Another is to use the recursive enumeration  of M , M , M , …0 1 2

DTMs, that is, to treat their codes as "Gödel Numbers."  Then the definition looks like:
 

}.D  =  i :  i ∉  L MTM { ( i)
 
The proof then goes: if  existed, it would equal  for some number .  But then  accepts ... Q Mq q Q q ⟺

as above.  
 
Another help is to compare with an abstract proof about sets.  Consider functions  whose arguments f

are elements of a set  and whose outputs are subsets of . The  function from an NFA A A p, 0𝛿( )

becomes such a function when you fix the char . Thus we write  where  denotes the c f :  A P A→ ( ) P

power set. Then  being onto would mean every subset of  is a value of  on some argument. But:f A f
 
Theorem: No function  can ever be onto .f :  A P A→ ( ) P A( )
 
Proof: Suppose we had such an  and .  Then we would have the subsetA f
 

.D  =  a ∈  A :  a is not in the set f a{ ( )}
 
By  being onto, there would exist  such that .  But then:f d ∈  A f d  =  D( )
 
                    by d ∈  D ⟺  d is in the set f d( ) f d  =  D( )

                            by definition of .⟺ d is not in the set f d( ) d ∈  D
 
The contradiction rolls back to the beginning, so there cannot be such an  and . A f ☒

 

 



 
When  is a finite set, this is obvious just by counting.  Suppose .  Then there are A A =  1, 2, 3, 4, 5{ }

 subsets but only  elements of  to go around.  As the size of  increases this becomes 2  =  325 5 A A

"more and more obvious."  The historical kicker is that the proof works even when  is infinite.  Georg A

Cantor gave ironclad criteria by which it follows that  always has higher cardinality than .  In the P A( ) A

case where  or  this tells us that the set of all languages has higher cardinality than A =  N A =  𝛴*

, i.e., is not countably infinite.  Because we have only countably many (string codes or Gödel A
numbers of) Turing machines, this is an "existence proof" that many languages don't have machines.  
The function  cannot be onto .f ⟨M⟩  =  L M( ) ( ) P 𝛴

*

 
Many sources give the illustration where the real numbers  are used in place of .  There is a R P 𝛴

*

nagging technical issue that two different decimal or binary expansions like  and  0.01111... 0.1000...
can denote the same number (0.5 in this case) but in decimal one can avoid it.  The real number that is 
"not counted" is pictured by going down the main diagonal of an infinite square grid, hence the name 
diagonalization for the whole idea.  But I like to do without it.
 
Yet another variation is to define  with regard to other progarmming formalisms besides Turing D
machines, for instance:
 

System.exit(0) .D = p :  p compiles in Java to a program P such that P p  does not execute Java { ( ) }

 
If  were c.e. then by the equivalence of Java and TMs, there would be a Java program  such DJava Q

that  (where acceptance means exiting normally).  Then  would have a valid code  L Q  =  D( ) Java Q q

that compiles to  and ... the logic is the same as before.Q
 
One nice aspect of Gödel Numbers is that you don't have to worry about strings that are not valid 
codes.  So if we define

}D =  D  =  i :  i ∉  L MTM { ( i)

} = K =  K  =  i :  i ∈  L MTM { ( i) i :  ⟨M , i⟩ ∈  A{ i TM }

 
then  is literally the complement of .  KTM DTM

 

 

REC

RE co-RE

neither c.e. nor co-c.e.

This diagram conveys some extra information:
 is closed under complements, ◎ REC

, and◎ RE ∩  co - RE =  REC

 All three classes are closed downward under◎

     computable many-one/mapping reductions.

DK
ATM



Footnote: Bertrand Russell came up with the most vicious and viscous diagonal set of all:
 
                                                   .D =  x :  x ∉  x{ }
 
The original freewheeling approach to set theory allowed you to state the possibility of a set being a 
member of itself.  If you expect that no set could ever be a member of itself, then  would become "the D

set of all sets"---but then  would be a member of itself.  Indeed, we immediately get the logical D

equivalence .  The resolution is not that " " is always true, but rather that "D ∈  D ⟺  D ∉  D x ∉  x

" and " "  do not compile --- because the  relation and its negation are allowed to be x ∈  x x ∉  x ∈

used only between objects of type  and set< > for some type .  This led to a hierarchy of types, T T T

which were called "ramified", and a book Principia Mathematica that can be analogized to reading the 
object code of a compiler, both painful...

 

 



 

 

 


