
CSE491/596 Lecture Mon. Oct. 9, 2023: Undecidable Languages

First, a portion of notes I skipped over when doing the Friday 10/06/23 lecture afresh from overhead
projector drawings: The most basic kind of problems about automata or programs is whether they
accept a given input. Here is the Sipser naming scheme exemplified for DFAs:

: (The "Acceptance Problem for DFAs")ADFA

INST: A DFA and a string . M = Q, 𝛴, 𝛿, s, F() x ∈ 𝛴
*

QUES: Does accept ?M x

The input to a decision procedure for this problem is given in the form . The language is⟨M, x⟩

.A = ⟨M, x⟩ : M is a DFA and M accepts xDFA { }

The length of can be reckoned as roughly of order where is the number of states in N ⟨M, x⟩ m + n m

 (note that the number of instructions for a DFA is times and we can treat as a fixed Q m |𝛴| |𝛴|

constant such as) and as usual. The alphabet of the language can be reckoned as 2 n = |x| ADFA

ASCII or even as . Here is a simple statement of an algorithm to solve the problem---you 0, 1{ } ADFA

could summarize it as "Just Do It":

1. Given , first decode and individually. (If not possible, reject.)⟨M, x⟩ M x

2. Run (using a simulator like the Turing Kit) until the DFA reaches the end of .M x() x

3. Accept if accepted , else halt and reject .⟨M, x⟩ M x ⟨M, x⟩

This pseudocode always halts because a DFA always halts. To simulate a step of takes time M M x()

at most order- ; really it can be time per step using good data structures (mainly being able m O m(log)

to assign a pointer to the destination state in any executed instruction). So the running time is O mn()

which gives time taking the length into account. Thus we can say:O N2 N = |⟨M, x⟩|

• The algorithm is a decision procedure to solve the problem.ADFA

• Hence the problem and the language are called decidable.ADFA ADFA

• In fact, they are decidable in polynomial time.

Now suppose we have an NFA in place of the DFA.

: (The "Acceptance Problem for NFAs")ANFA

INST: An NFA and a string . N = Q, 𝛴, 𝛿, s, F() x ∈ 𝛴
*

QUES: Does accept ?N x

The following qualifies as a decision procedure, albeit highly inefficient:

1. Given , first decode and individually.⟨N, x⟩ N x

2. Convert into an equivalent DFA .N M

3. Then run the decision procedure for on and give the same yes/no answer.ADFA ⟨M, x⟩

But step 2 makes this an inefficient reduction---it can require order-of time where we are now calling 2m

 the number of states in . Then again, step 2 does always halt, so if halting is all you care about, it m N
goes as a decision procedure. But faster is:

1. Given , first decode and individually.⟨N, x⟩ N x

2. Initialize to be the -closure of the start state of .R0 𝜖 N

3. For each char of , build the set of states reachable from a state in by processing .xi x Ri Ri-1 xi

4. Accept if and only if , which is if and only if accepts .⟨N, x⟩ R ∩ F ≠ ∅n N x

For each char , step 3 runs in time at worst (again, one can do better with smarter data i O m2

structures), so the whole time is , which is polynomial in . O m n2 |⟨N, x⟩| ≈ m + n

Now how about the same kind of problem for Turing machines? We presume deterministic ones:

: (The "Acceptance Problem for Turing Machines"---default is deterministic)ATM

INST: A DTM and a string . M = Q, 𝛴, 𝛤, 𝛿, _, s, q , q(acc rej) x ∈ 𝛴
*

QUES: Does accept ?M x

Is this decidable? What if we just run on ? It is deterministic after all. But it might not halt... M x

Another question is whether the language is computably enumerable.A = ⟨M, x⟩ : x ∈ L MTM ()}

The Diagonal Language---and the Problem It Causes

Define . That is, D = ⟨M⟩ : M does not accept ⟨M⟩ TM { } ⟨M⟩ : ⟨M, M⟩ ∉ A .{ TM }

There is a notation for the language of machines that do accept their own code:

. That is, K = ⟨M⟩ : M does accept ⟨M⟩ TM { } ⟨M⟩ : ⟨M, M⟩ ∈ A .{ TM }

Note that the case , that is, not halting on its own code, counts as being in the M ⟨M⟩ ↑() M ⟨M⟩

language even though you can't immediately "register" that condition. DTM

Theorem: The language is not c.e.---that is, there does not exist a TM such that .DTM Q L Q = D() TM

I am using the letter in a new way, to refer to a whole machine rather than its set of states, in order to Q
reinforce the point that this machine does not actually exist although the proof involves talking about it
as if it did. We can say is quixotic, after Don Quixote.Q

Proof. Suppose such a existed. Then it would have a string code . Then we could run Q q = ⟨Q⟩ Q

on input . The logical analysis of that run, on hypothesis , is:q L Q = D() TM

 by Q accepts q ⟺ q is in DTM L Q = D() TM

 by definition of .⟺ Q does not accept q q ∈ DTM

The analysis makes a statement equivalent to its negation, which is a "logical rollback" condition. The
rollback goes all the way to the first sentence of the proof. So such a cannot exist. Q ☒

D = q : Q does not accept q where q = ⟨Q⟩ TM { }

The view this "in reverse": Suppose . Since , this means does not Q does not accept q q = ⟨Q⟩ Q

accept its own code . This means in turn that , i.e., , belongs to the language. But if we ⟨Q⟩ ⟨Q⟩ q DTM

maintain that , then must accept after all. This is a contradiction.L Q = D() TM Q q

It is worth reworking this proof in several ways. One is to follow the chain of implications in both
directions like a cat chasing its tail. Another is to use the recursive enumeration of M , M , M , …0 1 2

DTMs, that is, to treat their codes as "Gödel Numbers." Then the definition looks like:

}.D = i : i ∉ L MTM { (i)

The proof then goes: if existed, it would equal for some number . But then accepts ... Q Mq q Q q ⟺

as above.

Another help is to compare with an abstract proof about sets. Consider functions whose arguments f

are elements of a set and whose outputs are subsets of . The function from an NFA A A p, 0𝛿()

becomes such a function when you fix the char . Thus we write where denotes the c f : A P A→ () P

power set. Then being onto would mean every subset of is a value of on some argument. But:f A f

Theorem: No function can ever be onto .f : A P A→ () P A()

Proof: Suppose we had such an and . Then we would have the subsetA f

.D = a ∈ A : a is not in the set f a{ ()}

By being onto, there would exist such that . But then:f d ∈ A f d = D()

 by d ∈ D ⟺ d is in the set f d() f d = D()

 by definition of .⟺ d is not in the set f d() d ∈ D

The contradiction rolls back to the beginning, so there cannot be such an and . A f ☒

When is a finite set, this is obvious just by counting. Suppose . Then there are A A = 1, 2, 3, 4, 5{ }

 subsets but only elements of to go around. As the size of increases this becomes 2 = 325 5 A A

"more and more obvious." The historical kicker is that the proof works even when is infinite. Georg A

Cantor gave ironclad criteria by which it follows that always has higher cardinality than . In the P A() A

case where or this tells us that the set of all languages has higher cardinality than A = N A = 𝛴*

, i.e., is not countably infinite. Because we have only countably many (string codes or Gödel A
numbers of) Turing machines, this is an "existence proof" that many languages don't have machines.
The function cannot be onto .f ⟨M⟩ = L M() () P 𝛴

*

Many sources give the illustration where the real numbers are used in place of . There is a R P 𝛴

*

nagging technical issue that two different decimal or binary expansions like and 0.01111... 0.1000...
can denote the same number (0.5 in this case) but in decimal one can avoid it. The real number that is
"not counted" is pictured by going down the main diagonal of an infinite square grid, hence the name
diagonalization for the whole idea. But I like to do without it.

Yet another variation is to define with regard to other progarmming formalisms besides Turing D
machines, for instance:

System.exit(0) .D = p : p compiles in Java to a program P such that P p does not execute Java { () }

If were c.e. then by the equivalence of Java and TMs, there would be a Java program such DJava Q

that (where acceptance means exiting normally). Then would have a valid code L Q = D() Java Q q

that compiles to and ... the logic is the same as before.Q

One nice aspect of Gödel Numbers is that you don't have to worry about strings that are not valid
codes. So if we define

}D = D = i : i ∉ L MTM { (i)

} = K = K = i : i ∈ L MTM { (i) i : ⟨M , i⟩ ∈ A{ i TM }

then is literally the complement of . KTM DTM

REC

RE co-RE

neither c.e. nor co-c.e.

This diagram conveys some extra information:
 is closed under complements, ◎ REC

, and◎ RE ∩ co - RE = REC

 All three classes are closed downward under◎

 computable many-one/mapping reductions.

DK
ATM

Footnote: Bertrand Russell came up with the most vicious and viscous diagonal set of all:

 .D = x : x ∉ x{ }

The original freewheeling approach to set theory allowed you to state the possibility of a set being a
member of itself. If you expect that no set could ever be a member of itself, then would become "the D

set of all sets"---but then would be a member of itself. Indeed, we immediately get the logical D

equivalence . The resolution is not that " " is always true, but rather that "D ∈ D ⟺ D ∉ D x ∉ x

" and " " do not compile --- because the relation and its negation are allowed to be x ∈ x x ∉ x ∈

used only between objects of type and set< > for some type . This led to a hierarchy of types, T T T

which were called "ramified", and a book Principia Mathematica that can be analogized to reading the
object code of a compiler, both painful...

