
CSE491/596 Lecture Wed. 10/11/23: Computations and (Un)Decidability
 
Let  encode sequences of possible IDs of a (single-tape) Turing machine.  We can writec

 
=  ⟨I , I , I , … , I ⟩c 0 1 2 t

 
Definition: This is a valid accepting computation of a TM  (NTM allowed) on some input  if:M x

1.  which is the starting ID on input .  Single-tape TM: .I  =  I x0 0( ) x I x = sx0( )

2. For all , ,   .  j 1 ≤ j ≤ t I  ⊢  Ij-1 M j

3.  is an accepting ID.  With "good housekeeping", .It I = q 1t acc

A valid halting computation allows  to be a halt-and-reject ID, such as .It q 0rej

 
Definition: For any TM  (NTM allowed),  denotes the language of valid accepting M VALCOMPSM

computations of .  (Some sources say "...of valid halting computations of .")  And M M

.VALCOMPS =  ⟨M, x, ⟩ :   ∈  VALCOMPS  ∧  = ⟨I x , … ⟩{ c c M c 0( ) }

 
In my earlier notes and many sources,  is called the Kleene -predicate---after the VALCOMPS T
same Stephen Kleene who proved the central theorem about regular languages.
 
Theorem: Given any fixed Turing machine , we can build a two-tape M = Q, 𝛴, 𝛤, 𝛿, _, s, F( )

deterministic Turing machine  that decides  in linear time.HM VALCOMPSM

 
Here the time is reckoned in the length of .  If  is valid to begin with, and if we c = ⟨I , I , I , … , I ⟩c 0 1 2 t

suppose  is at least as big as the length  of the input  in , then the length is .t n x I0 O t2

 
[I have taken extra time to include two concrete steps as examples in the proof.]
 
Proof:  We may suppose that  is encoded as a string over the alphabet , where c 𝛤' =  Q∪ 𝛤∪ #, %{ }

 is used to terminate IDs, rather than comma to separate them, and  is used to represent blanks # %

inside IDs.  Note that since the state set  of  is finite, it is completely legitimate to make it part of a Q M

bigger alphabet.  (And ultimately, any alphabet  like this can be re-encoded via strings over .)  𝛤' 0, 1{ }

We build , where  is  minus the actual blank , as follows.   first H  =  Q', 𝛴', 𝛤', 𝛿'. _, s', F'M ( ) 𝛴' 𝛤' _ HM

copies the purported computation given on its input tape to its second tape like so:
 

 

 

 

s x  x  x  ⋯  x  _ _ …  _  # 1 2 3 n 0 p x  x  ⋯  x  _ _ …  _  # 2 3 n q 0 1 x ⋯  x  _ _ …  _  #  …3 n

s x  x  x  ⋯  x  _ _ …  _  # 1 2 3 n 0 p x  x  ⋯  x  _ _ …  _  # 2 3 n q 0 1 x ⋯  x  _ _ …  _  #  …3 n



For the concrete example, let us suppose  and  are the first two bits of the input .  Then x = 11 x = 02 x

 is shown executing the instructions  and .  They leave  in state  M s, 1 / 0, R, p( ) p, 0 / 1, L, q( ) M q

scanning the  that it wrote in the first step.  To begin verifying the results of these instructions,  0 HM

rewinds its first tape head to the left and advances its second tape head to the cell after the first  #

separator---here I have filled in  and :x = 11 x = 02

 

 
The point is that in this and the next steps, the heads will read the  and  from the first tape and the  s 1 0

and  from the second tape.  These contents, plus the  being to the right of where the  was, uniquely p p s

specify the instruction  as the only one that could have been executed.  itself is hard-s, 1 / 0, R, p( ) HM

coded to allow only the combinations specified in turn by the instructions of .  Beyond the limited M
range of that instruction, the characters in the IDs must be identical, since no change took place there.  
The heads of  verify that in lockstep until they hit the next pair of  signs and move one cell further HM #

forward:
 

 
Well, they need to move two cells more:
 

 
At this point,  remembers that it has seen  on tape 1 and  on tape 2.  This says that the HM 0p0 q01

instruction must have been .  This instruction is present, so  allows it and moves on.  If p, 0 / 1, L, q( ) HM

it were absent,  would immediately reject that combination as an "illegal move."   will accept a HM HM

trace string  if and only if all of the computation steps check out.c

 

 

s   1  0  x  ⋯  x  _ _ …  _  # 3 n 0 p  0 x  ⋯  x  _ _ …  _  # 3 n q 0 1 x ⋯  x  _ _ …  _  #  …3 n

s  1   0  x  ⋯  x  _ _ …  _  # 3 n 0 p  0 x  ⋯  x  _ _ …  _  # 3 n q 0 1 x ⋯  x  _ _ …  _  #  …3 n

s   1  0  x  ⋯  x  _ _ …  _  # 3 n 0 p  0 x  ⋯  x  _ _ …  _  # 3 n q 0 1 x ⋯  x  _ _ …  _  #  …3 n

s  1   0  x  ⋯  x  _ _ …  _  # 3 n 0 p  0 x  ⋯  x  _ _ …  _  # 3 n q 0 1 x ⋯  x  _ _ …  _  #  …3 n

s   1  0  x  ⋯  x  _ _ …  _  # 3 n 0 p  0 x  ⋯  x  _ _ …  _  # 3 n q 0 1 x ⋯  x  _ _ …  _  #  …3 n

s  1   0  x  ⋯  x  _ _ …  _  # 3 n 0 p  0 x  ⋯  x  _ _ …  _  # 3 n q 0 1 x ⋯  x  _ _ …  _  #  …3 n



 
If the instruction had been  with a stay move instead, then the tapes at the after-  point p, 0 / 1, S, r( ) #

would look like this:

 
Here  would already know that the two scanned s could not have been part of any instruction, HM 0

because we are using the convention of putting the state to the left of the character scanned by the 
tape head.  They are thus part of the "inert character matching" between the IDs that just happens to 
come before rather than after the two-or-three-char region where the tape head of  is.  Since the two M

s matched (if one or the other was a  this would be a mismatch for immediate rejection), the heads 0 1

move on:

 
The combination  and  is correct for the instruction .  If  is nondeterministic, then p0 r1 p, 0 / 1, S, r( ) M

both instructions would be allowed.  Note that this doesn't make  nondeterministic---rather, its input HM

(i.e., the computation trace ) would change from being the first form with  to being the second form c q

with  and different happenings in nearby cells of the tape.r
 
[From here on, back to the lecture as I gave it.]
 
Now we can simply cut the long story short and say the two heads of  zip straight across left-to-right HM

and check the whole computation-trace string  in one swoop.  At the end,  accepts if its leading c HM

head scanned the state  in the final step.  This is just three passes through the input , so this takes qacc c

linear (hence polynomial) time.  ☒  

 
 
Application to Undecidability
 
Not only can we build  from any given , but if we are also given a specific input  to , then we HM M x M

can build a machine  which includes the extra check that the first ID has the same  as its HM,x x
nonblank string.  The key observation is:

 

 

s   1  0  x  ⋯  x  _ _ …  _  # 3 n 0 p  0 x  ⋯  x  _ _ …  _  # 3 n 0 r 1 x ⋯  x  _ _ …  _  #  …3 n

s  1   0  x  ⋯  x  _ _ …  _  # 3 n 0 p  0 x  ⋯  x  _ _ …  _  # 3 n 0 r 1 x ⋯  x  _ _ …  _  #  …3 n

s   1  0  x  ⋯  x  _ _ …  _  # 3 n 0 p  0 x  ⋯  x  _ _ …  _  # 3 n 0 r 1 x ⋯  x  _ _ …  _  #  …3 n

s  1   0  x  ⋯  x  _ _ …  _  # 3 n 0 p  0 x  ⋯  x  _ _ …  _  # 3 n 0 r 1 x ⋯  x  _ _ …  _  #  …3 n



 
• If  accepts , then it has a computation trace  on  that  accepts, so . M x c x HM,x L H ≠ ∅( M,x)

• If  does not accept , then there is no trace that  accepts, so .M x HM,x L H = ∅( M,x)

 
For the upshot, recall that according to Sipser's uniform naming scheme for computational problems 
about automata, the problem  is: "Given a TM , is ?"NETM R L R ≠ ∅( )

 
Theorem: The problem  is undecidable.  Indeed, it remains undecidable even when are told in NETM

advance that the TM  is deterministic and runs in linear time.R
 
Proof: Given an arbitrary instance  of the Acceptance Problem , we can build  as ⟨M, x⟩ ATM HM,x

above.  If we could decide the  problem for these machines --- i.e., decide whether  NETM L H ≠ ∅( M,x)

--- then we could decide whether  accepts .  But that is undecidable.  So  is undecidable.  M x NETM ☒
 
In my older notes, this kind of thing is formalized as a many-one reduction from  to  with the ATM NETM

reduction function  being .  I have a way of drawing these reductions as little f f ⟨M, x⟩  =  ⟨H ⟩( ) M,x

pictures that draw Turing machines like old-style flowcharts.  For us this year, it is enough to note a few 
more cases of this kind of dependent reasoning:
 
Theorem: The language of the  problem is co-c.e. and undecidable.ETM

 
Proof: The  language is computably enumerable, as it is the language of a nondeterministic TM NETM

that on input  guesses an  and , builds , and accepts if and only if  accepts ).  The  ⟨R⟩ x c HR,x HR,x c ETM

language is basically the complement of the  language, so ti is co-c.e.  And it is likewise NETM

undecidable, since the class of decidable languages is closed under taking complements.
 
Now for a problem/language that is "even more undecidable" than these:
 

Theorem: The language  is undecidable.  Furthermore, it is neither ALL  =  ⟨M⟩ : L M = 𝛴TM ( ) *

c.e. nor co-c.e.
 
Proof: Note that because the machines  are total (indeed, they run in linear time), the trick of HM,x

swapping the states  and  works.  The resulting machine  always recognizes the qacc qrej H'M,x

complment of the language .  Pulling in the key observations from above, we now have:L H( M,x)

 
•  accepts  .M x ⟹  L H ≠ ∅ ⟹  L H' ≠ 𝛴  ⟹  ⟨H' ⟩ ∉  ALL( M,x) ( M,x) *

M,x TM

•  does not accept  .M x ⟹  L H = ∅ ⟹  L H' = 𝛴  ⟹  ⟨H' ⟩ ∈  ALL( M,x) ( M,x) *
M,x TM

 
Thus if we could decide , we could decide  --- which we cannot do.  Technically, we have ALLTM ATM

shown that the language  is not c.e. either, because the function  ALLTM f' ⟨M, x⟩ = ⟨H' ⟩( ) M,x

constitutes a mapping reduction from the complement of  to .  ATM ALLTM

 

 



 
[I stopped the discussion of undecidability here, without stating or proving the "Furthermore" part, but it 
is not hard to complete it.  We need one more idea, which my previous-year notes call the "All-or-
Nothing Switch": Given any  pair, define  to be a deterministic TM that has  hard-wired ⟨M, x⟩ M'x x

inside it and otherwise mostly contains the code of .  Whatever input string  you formally give , it M w M'x
just erases  and uses its hard-coded states to write  in its place.  Then it goes to its  code.  The w x M
upshot is:
 

•  accepts   accepts any  .M x ⟹  M'x w ⟹  L M' = 𝛴  ⟹  ⟨M' ⟩ ∈ ALL( x) *
x TM

•  does not accept   does not accept any  M x ⟹  M'x w

.⟹  L M' = ∅ ⟹ L M' ≠ 𝛴  ⟹  ⟨M' ⟩ ∉  ALL( x) ( x) *
x TM

 
This incidentally provides another way of showing that  is not c.e., since it reduces from the ETM

complement of .  But most of note, it does the reduction to  with the yes/no outcomes ATM ALLTM

switched.  So it reduces the original  language to the  language, which bears the ATM ALLTM

consequence that the  language is not co-c.e. either.  So it is neither c.e. nor co-c.e. ALLTM ☒
 
I briefly mentioned that the "Halting Problem", while defined as "given  and , does  halt?", is M x M x( )

considered synonymous with the Acceptance Problem.  Here is a supplement to this remark that pulls 
in other things I've said, so I regard it as at the top level of course notes.]
 
One more important problem is whether a given Turing machine halts for all inputs.  This is the problem 
that confronts us with the machine shown for the Collatz  problem.  The corresponding language 3n + 1

can be written symbolically as  and called  (I actually shorten this to ⟨M⟩ :  ∀x  M x ↓{ ( ) ( ) } TOTALTM

).  This is in fact virtually the same language as : If we want to know whether a given TOT ALLTM

Turing machine  has  then---presuming  is in "good housekeeping form"---we can M L M = 𝛴( ) * M

create an "evil" machine  by adding arcs to make a never-halting loop at .  Then  is total if M'' qrej M''

and only if  (so that the rejecting state is not reached by any input).  Going the other way, if L M = 𝛴( ) *

you want to know whether a given Turing machine  is total, make an "angelic" machine  that M M'''

routes all arcs of  that go to  to go to  instead.  Then  if and only if  is total.  So M qrej qacc L M''' = 𝛴( ) * M

the languages  and  mapping reduce to each other.  ALLTM TOTALTM

 
Moreover, the mappings are so simple that historically, "halting" and "accepting" were considered 
identical concepts.  This is also why accepting states are called "final" states.  (I personally believe that 
keeping the concepts of "accepting" and "halting" separate is more illuminating.)
 
 
Application to NP
 
If we put a time limit on computations, then this translates into a limit on the length of possible 
computation strings  that we need to consider.  The key case is where the time limit  is polynomial in c t

 

 



the length  of the string " " involved, that is, .The following theorem draws the parallel n x t =  nO 1( )

between the cases with-and-without a polynomial time limit. 
 
Theorem (connecting Theorems 10.2 and 13.12 in Debray's notes): For any language ,L

•  is c.e. if and only if there is a decidable predicate  such that for all ,L R x, y( ) x ∈  𝛴*

.x ∈  L ⟺  ∃y ∈ 𝛴 R x, y* ( )

•  if and only if there are a polynomial-time decidable predicate  and a polynomial L ∈  NP R x, y( )

 such that for all ,q n( ) x ∈  𝛴*

.x ∈  L ⟺  ∃y ∈  𝛴 :  |y| ≤  q |x| R x, y* ( ) ( )

In both cases,  can be linear-time decidable; indeed,  can be the Kleene -predicate R x, y( ) R T

 as defined also for NTMs.  (The key difference is the polynomial length bound , not .)T N, x,( c) q R
 
In the lecture I wrote "Kleene " as  instead.   A sketch of the proof using the T VALCOMPS N, x,( c)

older " " notation:T

 
[I wrapped this into the subsequent lecture.  I also briefly drew a picture of the idea of stacking IDs 
vertically to enable conversion to Boolean circuits, because "checking computations" was the theme of 
the lecture, but I covered that in full in the subsequent lectures.]

 

 


