
CSE491/596 Lecture Fri. 10/13/23: Complexity, Reductions, and NP

Computational complexity theory is the study of the time, space, and other computational resources
needed to solve specified problems, and of the mathematical relationships between problems. The
resources are measured on model(s) of computation, of which the deterministic multitape Turing
machine (with read-only input tape) is (IMHO) surprisingly realistic. The relationships include
reductions. We have already defined running time for nondeterministic as well as deterministic TMs.

Definition: For any time function , using to mean DTM and :t n() M N for NTM

1. DTIME t n = L M : M runs in time t n[()] { () ()}

2. NTIME t n = L N : N runs in time t n[()] { () ()}

Convention: For any collection of time or space bounds, in particular one defined by -notation, T O

 means the union of over all functions in , and so on.DTIME T[] DTIME t n[()] t n() T

Definition (some of the "Canonical Complexity Classes"):

1. P = DTIME nO 1()

2. NP = NTIME nO 1()

3. E = DTIME 2 O n()

4. .EXP = DTIME 2nO 1()

We will cover space complexity in detail later. Here is a recap of what was proved about time
complexity for the class on Wednesday:NP

Theorem (connecting Theorems 10.2 and 13.12 in Debray's notes): For any language ,L

• is c.e. if and only if there is a decidable predicate such that for all ,L R x, y() x ∈ 𝛴*

.x ∈ L ⟺ ∃y ∈ 𝛴 R x, y* ()

• if and only if there are a polynomial-time decidable predicate and a polynomial L ∈ NP R x, y()

 such that for all ,q n() x ∈ 𝛴*

.x ∈ L ⟺ ∃y ∈ 𝛴 : |y| ≤ q |x| R x, y* () ()

In both cases, can be linear-time decidable; indeed, can be the Kleene -predicate R x, y() R T

 as defined also for NTMs. (The key difference is the polynomial length bound , not .)T N, x,(c) q R

In the lecture I wrote it as . A sketch recap of the proof:VALCOMPS N, x,(c)

The second part of the theorem is often used as the definition of . The polynomial-time DTM is NP VR

called a verifier, and given , any such that and is called a witness (or x ∈ L y R x, y() |y| ≤ q |x|()

certificate) for . It is usually easiest to tell that (the language of) a decision problem belongs to x ∈ L

 by thinking of a witness and its verification. For example:NP

SAT:
Instance: A logical formula in variables and operators .𝜙 x , … , x1 n ∧ , ∨ , ¬

Question: Does there exist a truth assignment such that ?a ∈ 0, 1{ }n 𝜙 a , … , a = 1(1 n)

The assignment cannot have length longer than the formula, and evaluating a formula on a given
assignment is quick to do. Hunting for a possible satisfying assignment, on the other hand, takes up to

 tries if there is no better way than brute force.2n

G3C:
Instance: An undirected graph .G = V, E()

Question: Does there exist a 3-coloring of the nodes of ?G

A 3-coloring is a function such that for all edges , . The 𝜒 : V R, G, B→ { } u, v ∈ E() 𝜒 u ≠ 𝜒 v() ()

table for needs only entries where , so it has length at most linear in the 𝜒 n n = |V| ≪ N = |G|

encoding length of (often . And it is easy to verify that a given coloring is correct.N G N ≈ n2) 𝜒

Corollary: For any language ,L'

• if and only if there is a decidable predicate such that for all ,L' ∈ co - RE R' x, y() x ∈ 𝛴*

.x ∈ L' ⟺ ∀y ∈ 𝛴 R' x, y* ()

• if and only if there are a polynomial-time decidable predicate and a L' ∈ co - NP R' x, y()

polynomial such that for all ,q n() x ∈ 𝛴*

.x ∈ L' ⟺ ∀y ∈ 𝛴 : |y| ≤ q |x| R' x, y* () ()

TAUT:
Instance: A Boolean formula , same as for SAT.𝜙'

Question: Is a tautology, that is, true for all assignments?𝜙'

Note that is unsatisfiable every assignment makes false every assignment makes 𝜙 ≡ a 𝜙 a() ⟺ a

 true, where . Thus TAUT is essentially the complement of SAT.𝜙' a() 𝜙' = ¬𝜙

Let PRIMES (encoded as, say,)= 2, 3, 5, 7, 11, 13, 17, 19, 23, …{ } 10, 11, 101, 111, 1011, …

This language was formally shown to belong to only in 2004, but had long been known to be "almost P

there" in numerous senses.

FACT:
Instance: An integer and an integer .N k

Question: Does have a prime factor such that ?N p p ≤ k

If you can always answer yes/no in polynomial time , where is the number of bits in , r n() n ≈ Nlog2 N

then you can do binary search to find a factor of in time . By doing and p N O nr n(()) N' = n / p

repeating you can get the complete factorization of in polynomial time. This is something that the N
human race currently does not want us to be able to do, as it would (more than Covid?) "destroy the
world economy" by shredding the basket in which most of our security eggs are still placed. But to

P

NP co-NP

TAUTSAT,G3C

𝜃 > 45∘

A

B

means A ≤ B
p
m

REG

∃q ∀qNote differences from
the unbounded
computability case:
NP intersect co-NP is
not known (or believed)
to equal P, and the
quantifiers are length-
bounded by a polynomial.

FACT

PRIMES

indicate proximity to this peril, we note:

FACT: FACT is in co- .NP ∩ NP

Proof: Suppose the answer to an instance is yes. We can verify it by guessing the unique ⟨N, k⟩

prime factorization (u.p.f.) of as . Although the right-hand side may seem long, N N = p p ⋯ p
a
1

1 a
2

2 a
ℓ

ℓ

 cannot be bigger than the number of bits of in binary because each is at least , and bigger ℓ N pi 2

powers only make have to be smaller. The length of the u.p.f. is . To verify it, one must verify ℓ O n()

that each is prime---but this is in polynomial time as above---and then simply multiply everything pi

together and check that the result is . Finally to verify the yes answer, check that at least one of the N

 is . pi ≤ k

Now suppose the answer to an instance is no. We can verify it by guessing the unique prime ⟨N, k⟩

factorization (u.p.f.) of as . Although the right-hand side may seem long, N N = p p ⋯ p
a
1

1 a
2

2 a
ℓ

ℓ

ℓ

cannot be bigger than the number of bits of in binary because each is at least , and bigger N pi 2

powers only make have to be smaller. The length of the u.p.f. is . To verify it, one must verify ℓ O n()

that each is prime---but this is in polynomial time as above---and then simply multiply everything pi

together and check that the result is . Finally to verify the no answer, check that none of the is N pi

. ≤ k

Thus we can verify both the yes and no cases (with the same witness!), so both the language and its
complement belong to . NP ☒

This makes the contrast to co- all the more important. Of course, we don't know RE ∩ RE = REC

 either, in contrast to . What restores much of the analogy is the similarity under NP ≠ P RE ≠ REC
reductions and having complete problems. We've seen what comes next already:

Definition: if there is a function that is computable in polynomial time such A ≤ B
p
m f : 𝛴 𝛴*

→
*

that for all , . x ∈ 𝛴* x ∈ A ⟺ f x ∈ B()

This is sometimes called a "Karp reduction" after Richard M. Karp but saying polynomial-time mapping
reduction (or many-one reduction) is clear. (There is a corresponding notion called "Cook reduction"
after Stephen Cook that uses oracles, but let's ignore it for now.)

Theorem: Suppose . Then:A ≤ B
p
m

(a) . So .B ∈ P ⟹ A ∈ P A ∉ P ⟹ B ∉ P

(b) . So .B ∈ NP ⟹ A ∈ NP A ∉ NP ⟹ B ∉ NP

(c) co- co- . So co- co- .B ∈ NP ⟹ A ∈ NP A ∉ NP ⟹ B ∉ NP

The proof is similar to the one with and and co-RE : We take a machine whose language REC RE MB

is and the reduction function and create the machine that on any input computes B f MA x y = f x()

and runs , accepting if and when accepts . There are two particular details:M yB() x MB y

• The composition of two polynomials and is a polynomial. Thus if is computable in tile, p q f p n()

then it follows in particular that . So if runs in time, then takes at |y| ≤ p |x|() MB q m() M xA()

most time, which is a polynomial in . This shows (a).q p |x|(()) n = |x|

• The mapping and timing works in (b) with a polynomial-time NTM in place of a DTM . In NB MB

that case we get a polynomial-time NTM , which is what we need for .NA A ∈ NP

Part (c) again follows simply because is the same as . This x ∈ A ⟺ f x ∈ B() x ∉ A ⟺ f x ∉ B()

also means that co- is likewise closed downward under .NP ∩ NP ≤
p
m

This is all summed up visually in the "cone diagram"---except that we don't know if the lines are definite
because is a possibility. NP = P

There is one other "grain of salt" that must be taken with all these diagrams: If and are two A B

languages in (technically, other than or but we sometimes ignore this point), then automatically P ∅ 𝛴*

 (this is a good self-study exercise, including why we have the technicality). Thus to keep up A ≡ B
p
m

the geometrical intuition of a steep angle meaning , we would have to warp the diagram so A ≤ B
p
m

that is a single point---squshed even more than how the above shows as a tiny subclass of . P REG P

Compute y = f x()

Run N yB()

if we have an accepting path

accept x

input x

N :A

P

NP co-NP

TAUTSAT,G3C

𝜃 > 45∘

A

B

means A ≤ B
p
m

REG

∃q ∀q

FACT

PRIMES

