
CSE491/596 Lecture Fri. 10/13/23: Complexity, Reductions, and NP
 
Computational complexity theory is the study of the time, space, and other computational resources 
needed to solve specified problems, and of the mathematical relationships between problems.  The 
resources are measured on model(s) of computation, of which the deterministic multitape Turing 
machine (with read-only input tape) is (IMHO) surprisingly realistic.  The relationships include 
reductions.  We have already defined running time for nondeterministic as well as deterministic TMs.
 
Definition: For any time function , using  to mean DTM and :t n( ) M N for NTM

1. DTIME t n  =  L M :  M runs in time t n[ ( )] { ( ) ( )}

2. NTIME t n  =  L N :  N runs in time t n[ ( )] { ( ) ( )}
 
Convention: For any collection  of time or space bounds, in particular one defined by -notation, T O

 means the union of  over all functions  in , and so on.DTIME T[ ] DTIME t n[ ( )] t n( ) T
 
Definition (some of the "Canonical Complexity Classes"):

1. P =  DTIME nO 1( )

2. NP =  NTIME nO 1( )

3. E = DTIME 2  O n( )

4. .EXP =  DTIME 2nO 1( )

 
We will cover space complexity in detail later.  Here is a recap of what was proved about time 
complexity for the class  on Wednesday:NP

 
Theorem (connecting Theorems 10.2 and 13.12 in Debray's notes): For any language ,L

•  is c.e. if and only if there is a decidable predicate  such that for all ,L R x, y( ) x ∈  𝛴*

.x ∈  L ⟺  ∃y ∈ 𝛴 R x, y* ( )

•  if and only if there are a polynomial-time decidable predicate  and a polynomial L ∈  NP R x, y( )

 such that for all ,q n( ) x ∈  𝛴*

.x ∈  L ⟺  ∃y ∈  𝛴 :  |y| ≤  q |x| R x, y* ( ) ( )

In both cases,  can be linear-time decidable; indeed,  can be the Kleene -predicate R x, y( ) R T

 as defined also for NTMs.  (The key difference is the polynomial length bound , not .)T N, x,( c) q R
 
In the lecture I wrote it as .   A sketch recap of the proof:VALCOMPS N, x,( c)

 

 



The second part of the theorem is often used as the definition of .  The polynomial-time DTM  is NP VR

called a verifier, and given , any  such that  and  is called a witness (or x ∈  L y R x, y( ) |y| ≤  q |x|( )

certificate) for .  It is usually easiest to tell that (the language of) a decision problem belongs to x ∈  L

 by thinking of a witness and its verification.  For example:NP

 
SAT:
Instance: A logical formula  in variables  and operators .𝜙 x , … , x1 n ∧ , ∨ , ¬

Question: Does there exist a truth assignment  such that ?a ∈ 0, 1{ }n 𝜙 a , … , a  =  1( 1 n)
 
The assignment cannot have length longer than the formula, and evaluating a formula on a given 
assignment is quick to do.  Hunting for a possible satisfying assignment, on the other hand, takes up to 

 tries if there is no better way than brute force.2n

 
G3C:
Instance: An undirected graph .G =  V, E( )

Question: Does there exist a 3-coloring of the nodes of ?G
 
A 3-coloring is a function  such that for all edges , .  The 𝜒 :  V R, G, B→ { } u, v  ∈  E( ) 𝜒 u  ≠  𝜒 v( ) ( )

table for  needs only  entries where , so it has length at most linear in the 𝜒 n n =  |V| ≪  N =  |G|

encoding length  of  (often .  And it is easy to verify that a given coloring  is correct.N G N ≈  n2) 𝜒
 

 

 



Corollary: For any language ,L'

•   if and only if there is a decidable predicate  such that for all ,L' ∈  co - RE R' x, y( ) x ∈  𝛴*

.x ∈  L' ⟺  ∀y ∈ 𝛴 R' x, y* ( )

•  if and only if there are a polynomial-time decidable predicate  and a L' ∈  co - NP R' x, y( )

polynomial  such that for all ,q n( ) x ∈  𝛴*

.x ∈  L' ⟺  ∀y ∈  𝛴 :  |y| ≤  q |x| R' x, y* ( ) ( )

 
TAUT:
Instance: A Boolean formula , same as for SAT.𝜙'

Question: Is  a tautology, that is, true for all assignments?𝜙'
 
Note that  is unsatisfiable every assignment  makes  false every assignment  makes 𝜙 ≡ a 𝜙 a( ) ⟺ a

 true, where .  Thus TAUT is essentially the complement of SAT.𝜙' a( ) 𝜙' =  ¬𝜙
 

 
Let PRIMES    (encoded as, say, )=  2, 3, 5, 7, 11, 13, 17, 19, 23, …{ } 10, 11, 101, 111, 1011, …
 
This language was formally shown to belong to  only in 2004, but had long been known to be "almost P

there" in numerous senses.
 
FACT:
Instance: An integer  and an integer .N k

Question: Does  have a prime factor  such that ?N p p ≤  k
 
If you can always answer yes/no in polynomial time , where  is the number of bits in , r n( ) n ≈  Nlog2 N

then you can do binary search to find a factor  of  in time .  By doing  and p N O nr n( ( )) N' =  n / p

repeating you can get the complete factorization of  in polynomial time.  This is something that the N
human race currently does not want us to be able to do, as it would (more than Covid?) "destroy the 
world economy" by shredding the basket in which most of our security eggs are still placed.  But to 
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indicate proximity to this peril, we note:
 
FACT: FACT is in co- .NP ∩  NP

 
Proof: Suppose the answer to an instance  is yes.  We can verify it by guessing the unique ⟨N, k⟩

prime factorization (u.p.f.) of  as .  Although the right-hand side may seem long, N N =  p p ⋯ p
a
1

1 a
2

2 a
ℓ

ℓ

 cannot be bigger than the number of bits of  in binary because each  is at least , and bigger ℓ N pi 2

powers only make  have to be smaller.  The length of the u.p.f. is .  To verify it, one must verify ℓ O n( )

that each  is prime---but this is in polynomial time as above---and then simply multiply everything pi

together and check that the result is .  Finally to verify the yes answer, check that at least one of the N

 is .  pi ≤  k

 
Now suppose the answer to an instance  is no.  We can verify it by guessing the unique prime ⟨N, k⟩

factorization (u.p.f.) of  as .  Although the right-hand side may seem long,  N N =  p p ⋯ p
a
1

1 a
2

2 a
ℓ

ℓ

ℓ

cannot be bigger than the number of bits of  in binary because each  is at least , and bigger N pi 2

powers only make  have to be smaller.  The length of the u.p.f. is .  To verify it, one must verify ℓ O n( )

that each  is prime---but this is in polynomial time as above---and then simply multiply everything pi

together and check that the result is .  Finally to verify the no answer, check that none of the  is N pi

. ≤  k
 
Thus we can verify both the yes and no cases (with the same witness!), so both the language and its 
complement belong to . NP ☒
 
This makes the contrast to co-  all the more important.  Of course, we don't know RE ∩ RE =  REC

 either, in contrast to .  What restores much of the analogy is the similarity under  NP ≠  P RE ≠  REC
reductions and having complete problems.  We've seen what comes next already:
 

Definition:  if there is a function  that is computable in polynomial time such A ≤  B
p
m f :  𝛴   𝛴*

→
*

that for all , .  x ∈ 𝛴* x ∈  A ⟺  f x  ∈  B( )
 
This is sometimes called a "Karp reduction" after Richard M. Karp but saying polynomial-time mapping 
reduction (or many-one reduction) is clear.  (There is a corresponding notion called "Cook reduction" 
after Stephen Cook that uses oracles, but let's ignore it for now.) 
 

Theorem: Suppose .  Then:A ≤  B
p
m

(a) .                         So .B ∈  P ⟹  A ∈  P A ∉  P ⟹  B ∉  P

(b) .                   So .B ∈  NP ⟹  A ∈  NP A ∉  NP ⟹  B ∉  NP

(c) co- co- .           So  co- co- .B ∈ NP ⟹  A ∈  NP A ∉ NP ⟹  B ∉ NP

 
The proof is similar to the one with  and  and co-RE : We take a machine  whose language REC RE MB

 

 



is  and the reduction function  and create the machine  that on any input  computes  B f MA x y =  f x( )

and runs , accepting  if and when  accepts .  There are two particular details:M yB( ) x MB y
 

• The composition of two polynomials  and  is a polynomial.  Thus if  is computable in  tile, p q f p n( )

then it follows in particular that .  So if  runs in  time, then  takes at |y| ≤  p |x|( ) MB q m( ) M xA( )

most  time, which is a polynomial in .  This shows (a).q p |x|( ( )) n =  |x|

• The mapping and timing works in (b) with a polynomial-time NTM  in place of a DTM .  In NB MB

that case we get a polynomial-time NTM , which is what we need for .NA A ∈  NP
 

 
Part (c) again follows simply because  is the same as .  This x ∈ A ⟺ f x ∈ B( ) x ∉ A ⟺ f x  ∉  B( )

also means that co-  is likewise closed downward under .NP ∩  NP ≤
p
m

 
This is all summed up visually in the "cone diagram"---except that we don't know if the lines are definite 
because  is a possibility.   NP =  P

 
There is one other "grain of salt" that must be taken with all these diagrams: If  and  are two A B

languages in  (technically, other than  or  but we sometimes ignore this point), then automatically P ∅ 𝛴*

 (this is a good self-study exercise, including why we have the technicality).  Thus to keep up A ≡  B
p
m

the geometrical intuition of a steep angle meaning , we would have to warp the diagram so A ≤  B
p
m

that  is a single point---squshed even more than how the above shows  as a tiny subclass of .  P REG P
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