
CSE491/596 Lecture Mon. 10/16/23: NP-Completeness and Cook-Levin Theorem
 
To make a separate definition: A language  is -complete if:B NP

• B ∈  NP

• For all languages , .A ∈ NP A ≤  Bp
m

The second condition by itself defines  being -hard.B NP

 

If  and  are both -complete, then we have both  and , which we summarize B B' NP B ≤  B'
p
m B' ≤  Bp

m

by writing  and saying that  and  are polynomial-time many-one equivalent. The "steep B ≡  B'
p
m B B'

angle means reduction" convention of the "cone diagram" makes equivalent problems/languages 
occupy the same point:

 
Before tackling Cook's Theorem on the -completeness of SAT, let's see some simpler examples of NP

reductions.  Consider these decision problems:
 
CLIQUE
Instance: An undirected graph  and a number .G =  V, E( ) k ≥  1

Question: Does there exist a set  of  (or more) nodes such that for each pair ,  S ⊆  V k u, v ∈  S u, v( )

is an edge in ? E
 
INDEPENDENT SET
Instance: An undirected graph  and a number .G =  V, E( ) k ≥  1

Question: Does there exist a set  of  (or more) nodes such that for each pair ,  S ⊆  V k u, v ∈  S u, v( )

is not an edge in ?  E
 
Important to keep straight: The languages of these problems are not complements of each other, 
despite their differing by just the word "not" at the end.  Both languages are in  with  as the NP S
witness.  An important point is that with , there are  subsets  that might have to be n =  |V| 2n S
considered.  A polynomial-time algorithm cannot try each one.  Within , however, there are at most  S n2

 

 

P

NP co-NP

TAUTSAT,G3C

𝜃 >  45∘

A

B

means A ≤  Bp
m

REG

∃q ∀q

FACT

PRIMES



pairs  that have to be considered.  Those can all be iterated through to check the body of the u, v( )

condition in quadratic time, so it becomes a polynomial-time decidable predicate .  It is not even R G, S( )

true that this predicate gets negated between the two languages, because it includes the "for each" 
part.  It is because this runs over only polynomially-many pairs that I suggest the convention of saying 
"for each" rather than "for all" there.   What actually gets complemented is the graph , as expressed G
by this fact:
 

 has a clique of size   the complementary graph  has an independent set of size .G k ⟺ G⏨ k
 

Therefore, the simple reduction function  reduces CLIQUE to IND SET and also vice-f G, k  =  , k( ) (G⏨ )

versa, so the problems are  equivalent.  [Note that this skips writing the angle brackets around ≡
p
m

; by now that's AOK.]  A second fact yields a second equivalence:⟨G, k⟩
 
The complement of an independent set  in  is a set  of nodes such that every edge involves a S G S'

node in .  Such an  is called (somewhat midleadingly, IMHO) a vertex cover.  Therefore:S' S'

 
 has an independent set of size (at least)     has a vertex cover of size (at most) .G k ⟺ G n - k

 
Note that the graph  stays the same; instead we flip around the target number from  nodes to  G k |V| - k
nodes.  In practice, when we're trying to optimize, we want to maximize cliques and independent sets 
and minimize vertex covers.  The latter gives rise to this decision problem:
 
VERTEX COVER (VC)
Instance: A graph  and a number .G ℓ ≥  1

Question: Does  have a vertex cover of size (at most) ?G ℓ

 
Then IND SET and VC reduce to each other via the reduction  (where it is g G, k  =  G, n - k( ) ( )

understood that  and .)G =  V, E( ) n =  |V|

 
Well, we've shown that these problems are mapping-equivalent to each other, but we haven't shown 
that they are -hard yet.  We will first show that  is -hard.NP SAT NP

 

 

 

G G⏨



 
The Cook-Levin Theorem
 
The central theorem that  is -complete used to be credited only to Stephen Cook of the SAT NP

University of Toronto in late-1970, early 1971.  (He was born in Buffalo and grew up nearby.)  Now we 
recognize Leonid Levin as having come up with it independently in the Soviet Union, even though he 
did not publish until 1973.  Part reason is that Levin gave a technically stronger result from a more 
cryptography-minded train of thought.  Levin is now at Boston University.
 
Before we state and prove the theorem, let us see one more application of the idea of tracing a 
sequence of IDs  that represent a valid -step computation by a TM , in this I x ,  I ,  I ,  … ,  I0( ) 1 2 t t M
case a DTM.  Whereas the Kleene -predicate pictures them side-by-side, now we will stack them up T
into  columns in a grid.  For visual convenience we will suppose  is a 1-tape TM whose tape has t + 1 M
a left end and is infinite only to the right, but this is not essential and we could add another grid to 
handle a second tape, with wires between the grids as well as within them.  But for polynomial time, the 
simple one-plane grid is enough.  Initially it has  columns to hold the  left-endmarker and the n + 1 ∧

input .  Over  steps,  cannot possibly visit more than  more cells, so we can lay the whole thing out x t M t
on a  grid with .  t + 1  ×  s( ) s ≤  t + 1

 

 
Every cell contains either a character in the work alphabet  of  or a pair in  of a state and a 𝛤 M Q ×  𝛤
char.  We can use a binary encoding (a-la ASCII) of both.  Then we can program a fixed finite function 
in Boolean logic, depending only on the instructions  of , that determines the contents of a cell in 𝛿 M
any row  depending only on the contents of it and its neighbor cell(s) in row  for the previous i ≥  1 i - 1

timestep.   The top row is initialized to  plus blanks to fill out the remaining columns up to .  I x0( ) t
 
Because NAND is a universal gate, we can program the entire grid into a Boolean circuit  entirely of Cx

NAND gates, with an output wire  at the bottom giving the final results, 1 or 0.  Because the formula w0

 

 

∧ I x0( )

⋮

If

∧

∧

∧

⋮ ⋮ ⋮ ⋮ ⋮

∧

q
∧

1
or 0 for a rejecting computation

_ _ _ _ _ _s
x1

x2 x3 xn-1 xn

… … …

…
𝛿



for over every cell is the same, the circuit  has such a regular structure (pun quasi-intended) that it 𝛿 Cx

is easily computed in  time given .  [Added afterward] The " " is used only once and the values O t2 x x

of its bits do not affect the layout, so we can give it via  input gates to what is otherwise a circuit  n Cn

that depends only on the length  of .  We could suppose  so  is already in binary, but we n x 𝛴 =  0, 1{ } x
could also regard the Boolean encoding of  that the circuit is already using as implicit at 𝛤 ∪  Q ×  𝛤( )

the inputs, so there are really  binary input gates.  The theorem we have proved has its own n' =  O n( )

significance:
 
Theorem (often attributed to John E. Savage): For any language  in  and all  we can compute in A P n

 time a circuit  of NAND gates such that for all , . nO 1( ) Cn x ∈ 𝛴n x ∈  A ⟺  C x  =  1n( ) ☒
 
The meaning of this theorem is that "software can be burned into hardware."  The fact that 

 is polynomial-time computable goes into saying that the sequence  of circuits f x  =  ⟨C , x⟩( ) n C[ n]∞n=1

is P-uniform.  The only reason  is not a "regular reduction" just like the reduction to  is that  f ATM Cn

needs counting up to  and more, and FSTs like DFAs cannot do unbounded counting.  But it is n =  |x|

close-to-regular in other senses of the above "Scholium" that in fact we get the stronger notion of being 
DLOGTIME-uniform.  
 
Similar diagram from the ALR notes, ch. 27, section 3, showing how each cell depends on its 3 
neighbors in the previous row:  

 

 



 
Statement and Proof of the Cook-Levin Theorem
 
The reduction goes not only to SAT but to a highly restricted subcase of SAT:
 
Definition. A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses

,𝜙 =  C  ∧  C  ∧  ⋯  ∧  C1 2 m

 
where each clause  is a disjunction of literals  or .  The formula is in -CNF if each clause has at Cj xi x⏨i k

most  distinct literals, strictly so if each has exactly .  A 3CNF formula that we will use as a running k k
example is .𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

 
3SAT
Instance: A Boolean formula  in 3CNF.𝜙 x , … , x  =  C  ∧  C  ∧  ⋯  ∧  C( 1 n) 1 2 m

Question: Is there an assignment  such that ? =  a a ⋯ a  ∈  0, 1a 1 2 n { }n 𝜙 a , … , a  =  1( 1 n)

 

Of course 3SAT  SAT because it is a restricted case of SAT.  Cook actually showed SAT  ≤
p
m ≤

p
m

3SAT in general, but that gets swept up anyway in the proof. 
 

Theorem [Cook 1971, Levin 1971--73]: 3SAT is NP-complete under , where the reduction function ≤
p
m

also yields an efficient 1-to-1 correspondence between satisfying assignments and witnesses for the 
source problem.
 
The following "circuit-based" proof is actually by Claus-Peter Schnorr from 1978.
 
Proof.  We have already seen that SAT is in  and verifying 3SAT is even easier---see notes below.  NP

Now let any  be given.  This time we use the "verifier" characterization of .  We can take a A ∈  NP NP

deterministic TM  and polynomials  such that for all  and  of length ,VR p, q n x n
 

x ∈  A ⟺  ∃y :  |y| =  q n V  accepts ⟨x, y⟩( ( ))[ R ]

 
and such that  runs in time  where .  Earlier we stated " as the bound VR p r( ) r =  n +  q n( ) "|y| ≤  q n( )

on witnesses, but now we are entitled to "play a trump card" by saying that the encoding scheme used 
to define  first puts things entirely in binary notation with the  parts padded out to the exact ⟨x, y⟩ y
length .  Since whatever alphabet  was originally defined over can be binary-encoded with only a q n( ) A
constant-factor expansion of length, we can regard the length  as meaning after the encoding is n
applied.  Since the reduction function  we are building is given , its length  is a known quantity, so f x n
we can finally specify  as just being the concatenation  of the binary strings.  Then  ⟨x, y⟩ xy |⟨x, y⟩|
really does equal .  (We abbreviate  as just .)n +  q n( ) q n( ) q
 
Now we apply Savage's theorem to .  For each , we get a circuit  with  input gates, the VR n Cn n +  q

 

 



first  for the bits  of (the binary encoding of) , and the others for , such that n x , … , x1 n x y , … , y1 q

 accepts .  Since NAND is a universal gate, we may suppose every gate in C xy  =  1 ⟺  Vn( ) R ⟨x, y⟩
the body of  is NAND.  Since  runs in time , the size of  is order-of .  Cn VR p r( ) Cn p r  =  p n + q n( )2 ( ( ))2

Moreover, because  has such a regular structure, we have:Cn

 
• the function  is computable in  time, which is polynomial in , and f x  =  ⟨C ⟩0( ) |x| p n + q n( ( ))2 n
•  itself depends only on , not on the values of the bits of .Cn n =  |x| x

 
Now we build a Boolean formula  out of .  After the above window-dressing, this comes real quick. 𝜙n Cn

 We first allocate variables  and  to stand for the input gates, so that the positive x , … x1 n y , … y1 q

literal  is carried by every wire out of the gate , and likewise every wire out of the gate  carries .  xi xi yj yj

Then we allocate variables  for every other wire in the circuit, where  is the output w , w , … , w0 1 s w0

wire and  is also proportional to the number of NAND gates , since every NAND s =  O p n + q( )2 g

gate has exactly two input wires.  Then every evaluation of  carries a Boolean value through each Cn

wire and so gives a legal assignment to these variables---but not every assignment to the wire variables 
is a legal evaluation of the circuit.  If it is not legal, then it must be inconsistent at some NAND gate.  
We write  to enforce that all gates work correctly.𝜙n

 
So consider any NAND gate  in the circuit, calling its input wires  and , and consider any output wire g u v

 (there will generally be more than one of those) from .  Definew g
 

.𝜙  =  u ∨  w  ∧  v ∨  w  ∧   ∨   ∨  g ( ) ( ) (u⏨ v⏨ w⏨)

 
Note this is in (non-strict) 3CNF where the literals in each clause have the same sign.  The point is that 

 is satisfied by, and only by, the assignments in  that make .  We can't have 𝜙g 0, 1{ }3 w =  u NAND v
 all be true, and if  or  is false, then  must be true.  Thus an assignment to all the variables u, v, w u v w

satisfies  if and only if it makes the gate  work correctly for the output wire .  So:𝜙g g w
 

𝜙  =  𝜙n ⋀
 

g
g

 
is a (non-strict) 3CNF formula that is satisfied by exactly those assignments that are legal evaluations 
of .  We will finally get the effect of "searching for" a witness  to the particular  by fixing the  Cn y x xi

variables to the values given by the actual bits of  and mandating that .  This is all done by x w  =  10

the "singleton clauses"  and for ,w( 0) 1 ≤ i ≤ n
 

 if the -th bit of  is , else . 𝛽  =  xi ( i) i x 1 𝛽  =  i (x⏨i)

 
Thus we finally define the reduction function  byf
 

.f x  =  𝜙  =  𝜙  ∧  w  ∧  𝛽  ∧  ⋯  ∧  𝛽( ) x n ( 0) 1 n

 

 



 
Then  is computable by one streaming pass over the circuit , and so is computable in the same f x( ) Cn

polynomial  time as .  For the mapping of the strings , we have:O p n + q n( ( ))2 Cn x

 
 the assignment x ∈  A ⟺  ∃y : |y| = q |x| C xy  =  1 ⟺  ∃y ∈ 0, 1 , w ∈ 0, 1 :( ( )) n( ) { }q { }s+1

 satisfies .  x, y, w( ) 𝜙  ∧  w  ⟺  𝜙  ∈  3SATn 0 x

 
For the witnesses, the point is that once a  is chosen, on top of  being given (and fixed by the  y x 𝛽i

clauses), the values of the rest of the wires in  are determined by evaluating all the gates beginning Cn

at the top.  Hence there is no choice in setting the wire variables  besides .  Thus the wk w  =  10

satisfying assignments are in 1-to-1 correspondence with strings  such that .  (If y V ⟨x, y⟩  =  1R( )

 then the correspondence is "none-to-none.")   x ∉  A ☒
 

 

 

 


