CSE491/596 Lecture Mon. Oct. 19: Hardness, Completeness, and Degrees of Unsolvability

We have seen problem instances of type "A machine and a string" and "Just a machine". Another type is: "Two machines". For example, the language and problem EQ_{TM} is defined by:

Instance: Two deterministic Turing machines M_1 and M_2 . Question: Is $L(M_1) = L(M_2)$?

Show that the language of this problem is neither c.e. not co-c.e. Rather than do reductions from K and D, we can show this for a simplified special case: Fix M_2 to be some TM M_{all} whose language is Σ^* . Then the reduction $f(M) = \langle M, M_{all} \rangle$ has the property that

$$M \in ALL_{TM} \iff f(M) \in EQ_{TM}.$$

So it mapping-reduces ALL_{TM} to EQ_{TM} . Since we know that ALL_{TM} is neither c.e. nor co-c.e., the same is true of EQ_{TM} .

Note that the reduction "restricts" the second value to be a fixed machine. It is called a *restriction* of the more-general problem "to" a special case that reduces to it. Another example icomes from the following consequence of A_{TM} being the language of a universal Turing machine.

Theorem: For every c.e. language $A, A \leq {}_{m} A_{TM}$.

Proof. By *A* being c.e., there exists a DTM M_a such that $L(M_a) = A$. For the reduction, we need to define a function *f* of type "string" \rightarrow "machine and a string" such that for all $x \in \Sigma^*$, $x \in A \iff f(x) \in A_{TM}$. So define $f(x) = \langle M_a, x \rangle$, or $f(x) = \langle a, x \rangle$ if you treat *a* as a Gödel number for the machine. Either way, the point is that *a* is fixed, so this is a linear-time computable reduction that just copies *x* onto other stuff. The reduction is correct because

$$x \in A \iff M_a \ accepts \ x \iff \langle M_a, x \rangle \in A_{TM}$$
.

Definition: Given any class C of languages, a language *B* is **hard** for C (**under** mapping reducibility \leq_m , which is the default---later poly-time mapping reductions \leq_m^p will be the default) if for all languages $A \in C$, $A \leq_m B$. If also $B \in C$, then *B* is **complete** for C (under \leq_m), also called C-**complete** when the reducibility relation involved is understood.

Example: A_{TM} is hard for **RE** under \leq_m , and since A_{TM} is c.e., it is complete for **RE**.(also written **RE**-*complete* or *r.e.-complete*, less frequently "c.e.-complete."

Proposition:

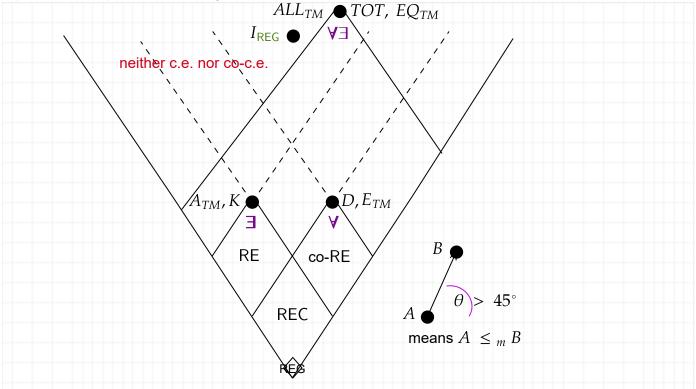
- If *B* is C-hard and $B \leq {}_{m} E$, then *E* is C-hard.
- If *B* is C-complete, $B \leq {}_{m} E$, and *E* is in C, then *E* is also C-complete.
- If *B* and *E* are C-complete (for any class C), then $B \equiv {}_m E$.

Examples:

- NE_{TM} , HP_{TM} , and K_{TM} are also **RE**-complete just like A_{TM} .
- Likewise (by "mirror image"), D_{TM} and E_{TM} are complete for **co-RE**.
- ALL_{TM} , TOT, and EQ_{TM} are hard for both **RE** and **co-RE**, but are not complete for either class because they don't belong to either class. (They are in fact all complete for a higher-up class which is in a presentation topic; they are \equiv_m equivalent to each other.)

Human Psych Fact #1: It is hard to think of an undecidable c.e. set that is **not RE**-complete. Giving one would be a fairly difficult homework problem---and if we considered completeness under the wider notion of *Turing reductions*, this was an open problem for two decades!

This anyway explains why I have been graphing these problems at the very peaks of classes---this represents completeness visually.



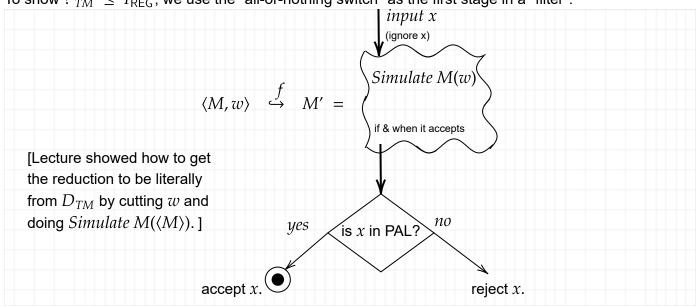
There are languages even higher up in the diagram. One of them---but we will only show that it is neither c.e. nor co-c.e.---is { $\langle M \rangle$: L(M) is regular}. Sources call this REGULAR or $REGULAR_{TM}$ or REG_{TM} , but I will use the notation I_{REG} to signify that it is the *index set* of the class of regular languages.

Definition: For any class C of c.e. langauges (that is, $C \subseteq RE$), its **index set** is given by

$$I_{\mathcal{C}} = \{i \colon L(M_i) \in \mathcal{C}\}.$$

The traditional use of Gödel numbers here is why it is called an "index" set. The other way to think about it is that it is a "purely semantic property"---that is, a property of the language that a program

accepts (or: of the Boolean function it computes) rather than of how the program is coded. For example E_{TM} is the index set of $\{\emptyset\}$, whereas \emptyset is the index set of the *empty class*.



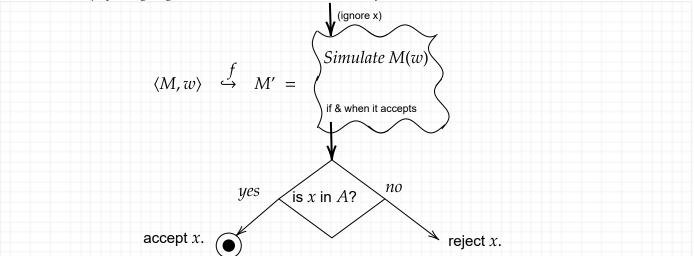
To show ? $_{TM} \leq I_{REG}$, we use the "all-or-nothing switch" as the first stage in a "filter":

 $\langle M, w \rangle \in A_{TM} \implies L(M') = PAL \implies L(M') \text{ is not regular} \implies \langle M' \rangle \notin I_{\mathsf{REG}}$. $\langle M, w \rangle \notin A_{TM} \implies L(M') = \emptyset \implies L(M') \text{ is regular} \implies \langle M' \rangle \in I_{\mathsf{REG}}$.

So did we show $A_{TM} \leq I_{REG}$? *No---the opposite*. We've reduced the complement of A_{TM} to I_{REG} . Knowing what we know about \equiv_m now, we can tweak this to show $D_{TM} \leq I_{REG}$. We have thus shown that I_{REG} is not c.e., besides being undecidable. [Showing that I_{REG} is not co-c.e. either is a self-study exercise. In fact, it is hard for ALL_{TM} but not equivalent to it---that gets difficult to show.]

Rice's Theorem: The only decidable index sets are $I_{\emptyset} = \emptyset$ and $I_{RE} = \mathbb{N} (\sim = \Sigma^*)$.

Proof: Because *C* is neither \emptyset nor RE, we have a language *A* such that *A* and the empty language are not both in or both out of C. Now form the reduction:



FYI, Human Psych Fact #2 is that very few appealing concepts of language classes have definitions more complicated than $\exists \forall \exists$ in form. I_{REG} has that form because:

L(M) is regular $\iff \exists a DFA M' such that \langle M, M' \rangle \in EQ_{TM}$, and the definition of $\langle M, M' \rangle \in EQ_{TM}$ has a (somewhat laborious) $\forall \exists$ form. The index sets of all complexity classes we will study have similar form. Now on to Complexity Theory from Wed....