CSE491/596 Lecture Fri. 10/20: NP-Completeness Proofs

First some remarks on the Cook-Levin Theorem: The mapping f from instance strings x of the general
NP-language A produced a formula ¢, with clauses of 1, 2, or 3 literals. We can make all clauses
have length exactly 3, and with no repeated variables in a clause, by the following trick: The formula

uvovz) AN(uvoVvz) ANuvo vz) A(uvo Vz)
can be satisfied only by making z false. We can conjoin it to ¢, and do likewise with
WV VZ)AN @ VY VZ)AN WV VZ)AN WV VZ)

Then insert z into each clause with 2 variables and add z’ for the 1-clauses, e.g., changing the output
clause (wy) to (wo V z V z’). Then the resulting ¢ is in strict 3CNF and is likewise satisfiable if and
only if x € A.

Note: if, say, x = 10110, then ¢, can have the singleton clauses
(X1 VzVZ)AN(X,VZVZ)AN(X3VZVZ)AN(XgVZVZ)AN(X5V2ZVZ)

The only thing keeping f from being linear (or quasi-linear) time computable is that the ¢ X t circuit grid
expands the number of gates---hence the number of clauses---quadratically. Claus-Peter Schnorr used
a theorem in 1997-78 by Nicholas Pippenger and Mike Fischer that cuts the circuit sice to O(t log t),
on the slight pain of making it have higher fan-out. That makes f computable in O(p(n)log p(n)) time,
where p(n) is the running time of the verifier (or NTM) for A.

"SAT-like" Complete Problems

Some decision problems can be shown to be NP-hard or NP-complete by reductions that are "SAT-
like." The first example uses the idea of a "mask" being a string of 0,1, and @ for "don't care". For
instance, the mask string sy = @01@@0@@ forces the second bit to be 0, the third bit to be 1, and the
sixth bit to be 0. A string like 00101001 "obeys" the mask, but 10011011 "violates" it in the third bit.

MASKS
Instance: A set of mask strings s1, ..., S,,, all of the same length 7.

Question: Does there exist a stringa € {0, 1}" that violates each of the masks?

Then we get 3SAT <! MASKS via a linear-time reduction f that converts each clause C; to a mask
sj so that strings a that violate the mask are the same as assignments that Cj. For instance, if
C; = (x2 V X3 V Xg), then we get the mask s = @01@@0@@ above. [This particular function f
is invertible, so that we can readily get the clause from the mask, but it is important to keep in mind
which direction the reduction is going in.]



Clearly the language of the MASKS problem is in NP, so it is NP-complete. We can also reduce
3TAUT (whose instances are Boolean formulas 1 in disjunctive normal form, called DNF, having at
most 3 literals per term) to the complementary problem of whether all strings x obey at least one mask.
We can also make an NFA N¢ that begins with e-arcs to "lines" fj corresponding to each term T]- of Y.
Each line has 7 states that work to accept the strings x that obey the corresponding mask. Making N¢
automatically accept all x of lengths other than # gives a reduction from 3TAUT to the ALLnra

problem, which finally explains why it is hard. (It is in fact not only co-NP hard under < 51 as this
shows, but also NP-hard; it is in fact complete for the higher class PSPACE which we will get to next
month.)

Reductions From 3SAT By Component Design - Part |

The "Ladder and Gadgets" framework for reduction from 3SAT: Given a 3CNF formula
¢(x1, ..., xy) = C1 A -+ A Cy, lay out 1 "rungs” of 2 nodes each and m "clause gadgets", plus
(optionally) space for one or more "governing nodes":

X1 X1

oo
EZ X>

*—o
X3‘- —_-_—_-’ X3

1

-

Xy Xy -
o0 C

Usually the rung nodes are connected, but not always---and sometimes an extra node or two are added

to each rung.To show 3SAT < ! IND SET, we need to map f(¢) = (G, k) such that G has an
independent set S of size (at least) k if and only if ¢ is satisfiable. Take k = n + m.

For this reduction, we make the "rungs" into actual edges between each x; and its negation x; and give
each clause three nodes to make a triangle. Each clause node is labeled by a literal in the clause.
Later we will include the clause index j, not just the variable index 7, when identifying this occurrence of
the literal in a clause to define V as a set, where G = (V, E).



The immediate effect, even before we consider an example of a formula, is that the maximum possible
k for an independent set S in the graph G is 1 + m. The most one can do is take one vertex from each
rung and one from each triangle to make S. Note that the vertices chosen from each rung specify a
truth assignment to the variables.

The final goal of the reduction is to add a third set of edges, which | call "crossing edges", to enforce
that a set S of size 1 + m is possible if and only if its corresponding assignment satisfies the formula.
The basic idea, even before we consider a formula, is as follows.

 Suppose clause C; includes the positive literal x;. Then we connect a crossing edge from x7 in
C; to the opposite literal x, in the rung.

 Suppose clause C, includes the negated literal 53. Then we connect a crossing edge from §3
in C, to the opposite literal in the rung, which is just x5.

b= (0 VI, V) A @ Vi VI)A RV TV I



k =n+m

[Lecture ended here. Mon. Oct. 23, 2023, picked up with this example.]



