First some remarks on the Cook-Levin Theorem: The mapping f from instance strings x of the general NP-language A produced a formula ϕ_{x} with clauses of 1,2 , or 3 literals. We can make all clauses have length exactly 3 , and with no repeated variables in a clause, by the following trick: The formula

$$
(u \vee v \vee \bar{z}) \wedge(\bar{u} \vee v \vee \bar{z}) \wedge(u \vee \bar{v} \vee \bar{z}) \wedge(\bar{u} \vee \bar{v} \vee \bar{z})
$$

can be satisfied only by making z false. We can conjoin it to ϕ_{x} and do likewise with

$$
\left(u^{\prime} \vee v^{\prime} \vee \bar{z}^{\prime}\right) \wedge\left(\bar{u}^{\prime} \vee v^{\prime} \vee \bar{z}^{\prime}\right) \wedge\left(u^{\prime} \vee \bar{v}^{\prime} \vee \bar{z}^{\prime}\right) \wedge\left(\bar{u}^{\prime} \vee \bar{v}^{\prime} \vee \bar{z}^{\prime}\right)
$$

Then insert z into each clause with 2 variables and add z^{\prime} for the 1-clauses, e.g., changing the output clause $\left(w_{0}\right)$ to ($w_{0} \vee z \vee z^{\prime}$). Then the resulting ϕ_{x}^{\prime} is in strict 3CNF and is likewise satisfiable if and only if $x \in A$.

Note: if, say, $x=10110$, then ϕ_{x} can have the singleton clauses

$$
\left(x_{1} \vee z \vee z^{\prime}\right) \wedge\left(\bar{x}_{2} \vee z \vee z^{\prime}\right) \wedge\left(x_{3} \vee z \vee z^{\prime}\right) \wedge\left(x_{4} \vee z \vee z^{\prime}\right) \wedge\left(\bar{x}_{5} \vee z \vee z^{\prime}\right)
$$

The only thing keeping f from being linear (or quasi-linear) time computable is that the $t \times t$ circuit grid expands the number of gates---hence the number of clauses---quadratically. Claus-Peter Schnorr used a theorem in 1997-78 by Nicholas Pippenger and Mike Fischer that cuts the circuit sice to $O(t \log t)$, on the slight pain of making it have higher fan-out. That makes f computable in $O(p(n) \log p(n))$ time, where $p(n)$ is the running time of the verifier (or NTM) for A.
"SAT-like" Complete Problems

Some decision problems can be shown to be NP-hard or NP-complete by reductions that are "SATlike." The first example uses the idea of a "mask" being a string of 0,1 , and @ for "don't care". For instance, the mask string $s_{0}=@ 01 @ @ 0 @ @$ forces the second bit to be 0 , the third bit to be 1 , and the sixth bit to be 0. A string like 00101001 "obeys" the mask, but 10011011 "violates" it in the third bit.

MASKS

Instance: A set of mask strings s_{1}, \ldots, s_{m}, all of the same length n.
Question: Does there exist a string $a \in\{0,1\}^{n}$ that violates each of the masks?

Then we get 3SAT $\leq{ }_{m}^{p}$ MASKS via a linear-time reduction f that converts each clause C_{j} to a mask s_{j} so that strings a that violate the mask are the same as assignments that satisfy C_{j}. For instance, if $C_{j}=\left(x_{2} \vee \bar{x}_{3} \vee x_{6}\right)$, then we get the mask $s_{0}=@ 01 @ @ 0 @ @$ above. [This particular function f is invertible, so that we can readily get the clause from the mask, but it is important to keep in mind which direction the reduction is going in.]

Clearly the language of the MASKS problem is in NP, so it is NP-complete. We can also reduce 3TAUT (whose instances are Boolean formulas ψ in disjunctive normal form, called DNF, having at most 3 literals per term) to the complementary problem of whether all strings x obey at least one mask. We can also make an NFA N_{ψ} that begins with ϵ-arcs to "lines" ℓ_{j} corresponding to each term T_{j} of ψ. Each line has n states that work to accept the strings x that obey the corresponding mask. Making N_{ψ} automatically accept all x of lengths other than n gives a reduction from 3TAUT to the $A L L_{N F A}$ problem, which finally explains why it is hard. (It is in fact not only co-NP hard under $\leq{ }_{m}^{p}$ as this shows, but also NP-hard; it is in fact complete for the higher class PSPACE which we will get to next month.)

Reductions From 3SAT By Component Design - Part I

The "Ladder and Gadgets" framework for reduction from 3SAT: Given a 3CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \cdots \wedge C_{m}$, lay out n "rungs" of 2 nodes each and m "clause gadgets", plus (optionally) space for one or more "governing nodes":

Usually the rung nodes are connected, but not always---and sometimes an extra node or two are added to each rung.To show 3SAT $\leq{ }_{m}^{p}$ IND SET, we need to map $f(\phi)=\langle G, k\rangle$ such that G has an independent set S of size (at least) k if and only if ϕ is satisfiable. Take $k=n+m$.

For this reduction, we make the "rungs" into actual edges between each x_{i} and its negation \bar{x}_{i} and give each clause three nodes to make a triangle. Each clause node is labeled by a literal in the clause. Later we will include the clause index j, not just the variable index i, when identifying this occurrence of the literal in a clause to define V as a set, where $G=(V, E)$.

The immediate effect, even before we consider an example of a formula, is that the maximum possible k for an independent set S in the graph G is $n+m$. The most one can do is take one vertex from each rung and one from each triangle to make S. Note that the vertices chosen from each rung specify a truth assignment to the variables.

The final goal of the reduction is to add a third set of edges, which I call "crossing edges", to enforce that a set S of size $n+m$ is possible if and only if its corresponding assignment satisfies the formula. The basic idea, even before we consider a formula, is as follows.

- Suppose clause C_{1} includes the positive literal x_{1}. Then we connect a crossing edge from x_{1} in C_{1} to the opposite literal \bar{x}_{1} in the rung.
- Suppose clause C_{2} includes the negated literal \bar{x}_{3}. Then we connect a crossing edge from \bar{x}_{3} in C_{2} to the opposite literal in the rung, which is just x_{3}.

$$
\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)
$$

[Lecture ended here. Mon. Oct. 23, 2023, picked up with this example.]

