
CSE491/596 Lecture Fri. 10/20: NP-Completeness Proofs
 
First some remarks on the Cook-Levin Theorem: The mapping  from instance strings  of the general f x
NP-language  produced a formula  with clauses of 1, 2, or 3 literals.  We can make all clauses A 𝜙x

have length exactly 3, and with no repeated variables in a clause, by the following trick: The formula
 

u∨ v ∨  ∧  ∨ v ∨  ∧  u∨  ∨  ∧  ∨  ∨( z⏨) (u⏨ z⏨) ( v⏨ z⏨) (u⏨ v⏨ z⏨)
 
can be satisfied only by making  false.  We can conjoin it to  and do likewise withz 𝜙x

 
u' ∨ v' ∨ '  ∧  ' ∨ v' ∨ '  ∧  u' ∨ ' ∨ '  ∧  ' ∨ ' ∨ '( z⏨) (u⏨ z⏨) ( v⏨ z⏨) (u⏨ v⏨ z⏨)

 
Then insert  into each clause with 2 variables and add  for the 1-clauses, e.g., changing the output z z'

clause  to .  Then the resulting  is in strict 3CNF and is likewise satisfiable if and w( 0) w ∨ z∨ z'( 0 ) 𝜙'x
only if .x ∈ A
 
Note: if, say, , then  can have the singleton clauses x =  10110 𝜙x

x ∨ z∨ z' ∧( 1 ) ∨ z∨ z' ∧(x⏨2 ) x ∨ z∨ z' ∧( 3 ) x ∨ z∨ z' ∧ ∨ z∨ z'( 4 ) (x⏨5 )

 
The only thing keeping  from being linear (or quasi-linear) time computable is that the  circuit grid f t × t
expands the number of gates---hence the number of clauses---quadratically.  Claus-Peter Schnorr used 
a theorem in 1997-78 by Nicholas Pippenger and Mike Fischer that cuts the circuit sice to , O t t( log )

on the slight pain of making it have higher fan-out.  That makes  computable in  time, f O p n p n( ( )log ( ))

where  is the running time of the verifier (or NTM) for .p n( ) A
 
"SAT-like" Complete Problems
 
Some decision problems can be shown to be NP-hard or NP-complete by reductions that are "SAT-
like."  The first example uses the idea of a "mask" being a string of 0,1, and @ for "don't care".  For 
instance, the mask string  forces the second bit to be 0, the third bit to be 1, and the s  =  @01@@0@@0

sixth bit to be 0.  A string like  "obeys" the mask, but  "violates" it in the third bit.  00101001 10011011
 
MASKS
Instance: A set of mask strings , all of the same length .s , … , s1 m n

Question: Does there exist a string  that violates each of the masks?a ∈  0, 1{ }n

 

Then we get 3SAT  MASKS via a linear-time reduction  that converts each clause  to a mask ≤
p
m f Cj

 so that strings  that violate the mask are the same as assignments that satisfy . For instance, if sj a Cj

, then we get the mask  above.  [This particular function  C  =  x  ∨   ∨  xj ( 2 x⏨3 6) s  =  @01@@0@@0 f
is invertible, so that we can readily get the clause from the mask, but it is important to keep in mind 
which direction the reduction is going in.]  

 

 



 
Clearly the language of the MASKS problem is in , so it is NP-complete.  We can also reduce NP

3TAUT (whose instances are Boolean formulas  in disjunctive normal form, called DNF, having at 𝜓

most 3 literals per term) to the complementary problem of whether all strings  obey at least one mask.  x
We can also make an NFA  that begins with -arcs to "lines"  corresponding to each term  of .  N𝜓 𝜖 ℓj Tj 𝜓

Each line has  states that work to accept the strings  that obey the corresponding mask.  Making  n x N𝜓

automatically accept all  of lengths other than  gives a reduction from 3TAUT to the  x n ALLNFA

problem, which finally explains why it is hard.  (It is in fact not only co-NP hard under  as this ≤
p
m

shows, but also NP-hard; it is in fact complete for the higher class  which we will get to next PSPACE

month.)  
 
 
Reductions From 3SAT By Component Design - Part I
 
The "Ladder and Gadgets" framework for reduction from 3SAT: Given a 3CNF formula 

, lay out  "rungs" of 2 nodes each and  "clause gadgets", plus 𝜙 x , … , x  =  C  ∧  ⋯  ∧  C( 1 n) 1 m n m
(optionally) space for one or more "governing nodes":

 
Usually the rung nodes are connected, but not always---and sometimes an extra node or two are added 

to each rung.To show 3SAT IND SET, we need to map  such that  has an ≤  
p
m f 𝜙  =  ⟨G, k⟩( ) G

independent set  of size (at least)  if and only if  is satisfiable.  Take .   S k 𝜙 k = n + m
 
For this reduction, we make the "rungs" into actual edges between each  and its negation  and give xi x⏨i

each clause three nodes to make a triangle.  Each clause node is labeled by a literal in the clause.  
Later we will include the clause index , not just the variable index , when identifying this occurrence of j i
the literal in a clause to define  as a set, where .V G =  V, E( )
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∨ x ∨ x(x⏨2 3 n)

 
The immediate effect, even before we consider an example of a formula, is that the maximum possible 
 for an independent set  in the graph  is .  The most one can do is take one vertex from each k S G n + m

rung and one from each triangle to make .  Note that the vertices chosen from each rung specify a S
truth assignment to the variables. 
 
The final goal of the reduction is to add a third set of edges, which I call "crossing edges", to enforce 
that a set  of size  is possible if and only if its corresponding assignment satisfies the formula.  S n + m
The basic idea, even before we consider a formula, is as follows.   
 

• Suppose clause  includes the positive literal .  Then we connect a crossing edge from  in C1 x1 x1

 to the opposite literal  in the rung.  C1 x⏨1

• Suppose clause  includes the negated literal .  Then we connect a crossing edge from  C2 x⏨3 x⏨3

in  to the opposite literal in the rung, which is just .C2 x3

 
.𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)
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[Lecture ended here.  Mon. Oct. 23, 2023, picked up with this example.]
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