
CSE491/596 Lecture Fri. 10/20: NP-Completeness Proofs

First some remarks on the Cook-Levin Theorem: The mapping from instance strings of the general f x
NP-language produced a formula with clauses of 1, 2, or 3 literals. We can make all clauses A 𝜙x

have length exactly 3, and with no repeated variables in a clause, by the following trick: The formula

u∨ v ∨ ∧ ∨ v ∨ ∧ u∨ ∨ ∧ ∨ ∨(z⏨) (u⏨ z⏨) (v⏨ z⏨) (u⏨ v⏨ z⏨)

can be satisfied only by making false. We can conjoin it to and do likewise withz 𝜙x

u' ∨ v' ∨ ' ∧ ' ∨ v' ∨ ' ∧ u' ∨ ' ∨ ' ∧ ' ∨ ' ∨ '(z⏨) (u⏨ z⏨) (v⏨ z⏨) (u⏨ v⏨ z⏨)

Then insert into each clause with 2 variables and add for the 1-clauses, e.g., changing the output z z'

clause to . Then the resulting is in strict 3CNF and is likewise satisfiable if and w(0) w ∨ z∨ z'(0) 𝜙'x
only if .x ∈ A

Note: if, say, , then can have the singleton clauses x = 10110 𝜙x

x ∨ z∨ z' ∧(1) ∨ z∨ z' ∧(x⏨2) x ∨ z∨ z' ∧(3) x ∨ z∨ z' ∧ ∨ z∨ z'(4) (x⏨5)

The only thing keeping from being linear (or quasi-linear) time computable is that the circuit grid f t × t
expands the number of gates---hence the number of clauses---quadratically. Claus-Peter Schnorr used
a theorem in 1997-78 by Nicholas Pippenger and Mike Fischer that cuts the circuit sice to , O t t(log)

on the slight pain of making it have higher fan-out. That makes computable in time, f O p n p n(()log ())

where is the running time of the verifier (or NTM) for .p n() A

"SAT-like" Complete Problems

Some decision problems can be shown to be NP-hard or NP-complete by reductions that are "SAT-
like." The first example uses the idea of a "mask" being a string of 0,1, and @ for "don't care". For
instance, the mask string forces the second bit to be 0, the third bit to be 1, and the s = @01@@0@@0

sixth bit to be 0. A string like "obeys" the mask, but "violates" it in the third bit. 00101001 10011011

MASKS
Instance: A set of mask strings , all of the same length .s , … , s1 m n

Question: Does there exist a string that violates each of the masks?a ∈ 0, 1{ }n

Then we get 3SAT MASKS via a linear-time reduction that converts each clause to a mask ≤
p
m f Cj

 so that strings that violate the mask are the same as assignments that satisfy . For instance, if sj a Cj

, then we get the mask above. [This particular function C = x ∨ ∨ xj (2 x⏨3 6) s = @01@@0@@0 f
is invertible, so that we can readily get the clause from the mask, but it is important to keep in mind
which direction the reduction is going in.]

Clearly the language of the MASKS problem is in , so it is NP-complete. We can also reduce NP

3TAUT (whose instances are Boolean formulas in disjunctive normal form, called DNF, having at 𝜓

most 3 literals per term) to the complementary problem of whether all strings obey at least one mask. x
We can also make an NFA that begins with -arcs to "lines" corresponding to each term of . N𝜓 𝜖 ℓj Tj 𝜓

Each line has states that work to accept the strings that obey the corresponding mask. Making n x N𝜓

automatically accept all of lengths other than gives a reduction from 3TAUT to the x n ALLNFA

problem, which finally explains why it is hard. (It is in fact not only co-NP hard under as this ≤
p
m

shows, but also NP-hard; it is in fact complete for the higher class which we will get to next PSPACE

month.)

Reductions From 3SAT By Component Design - Part I

The "Ladder and Gadgets" framework for reduction from 3SAT: Given a 3CNF formula

, lay out "rungs" of 2 nodes each and "clause gadgets", plus 𝜙 x , … , x = C ∧ ⋯ ∧ C(1 n) 1 m n m
(optionally) space for one or more "governing nodes":

Usually the rung nodes are connected, but not always---and sometimes an extra node or two are added

to each rung.To show 3SAT IND SET, we need to map such that has an ≤
p
m f 𝜙 = ⟨G, k⟩() G

independent set of size (at least) if and only if is satisfiable. Take . S k 𝜙 k = n + m

For this reduction, we make the "rungs" into actual edges between each and its negation and give xi x⏨i

each clause three nodes to make a triangle. Each clause node is labeled by a literal in the clause.
Later we will include the clause index , not just the variable index , when identifying this occurrence of j i
the literal in a clause to define as a set, where .V G = V, E()

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨n xn

. .
 .

. .
 .

C1

C2

Cm

∨ x ∨ x(x⏨2 3 n)

The immediate effect, even before we consider an example of a formula, is that the maximum possible
 for an independent set in the graph is . The most one can do is take one vertex from each k S G n + m

rung and one from each triangle to make . Note that the vertices chosen from each rung specify a S
truth assignment to the variables.

The final goal of the reduction is to add a third set of edges, which I call "crossing edges", to enforce
that a set of size is possible if and only if its corresponding assignment satisfies the formula. S n + m
The basic idea, even before we consider a formula, is as follows.

• Suppose clause includes the positive literal . Then we connect a crossing edge from in C1 x1 x1

 to the opposite literal in the rung. C1 x⏨1

• Suppose clause includes the negated literal . Then we connect a crossing edge from C2 x⏨3 x⏨3

in to the opposite literal in the rung, which is just .C2 x3

.𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (1 x⏨2 3) (1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨n xn

. .
 .

. .
 .

C1

C2

Cm

x3

x⏨1

x⏨2

xn

[Lecture ended here. Mon. Oct. 23, 2023, picked up with this example.]

x⏨1

x1
x⏨2

x2

x⏨3 x3

x⏨n

xn

. .
 . . .
 .

C1

C2

Cm

x⏨3

x1

k = n + m

G =

x⏨2
x⏨2

x3

x1

x2

x⏨1
x⏨1

x⏨3

x⏨n

