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Computational complexity theory is the study of the time, space, and other computational resourcesComputational complexity theory is the study of the time, space, and other computational resources  
needed to solve specified problems, and of the mathematical relationships between problems.  Theneeded to solve specified problems, and of the mathematical relationships between problems.  The  
resources are measured on model(s) of computation, of which the deterministic multitape Turingresources are measured on model(s) of computation, of which the deterministic multitape Turing  
machine (with read-only input tape) is (IMHO) surprisingly realistic.  The relationships includemachine (with read-only input tape) is (IMHO) surprisingly realistic.  The relationships include  
reductions.  We have already talked about running in linear and polynomial time, but here is the fullreductions.  We have already talked about running in linear and polynomial time, but here is the full  
formalization:formalization:
  
DefinitionDefinition::  

1. 1. Given a function Given a function , a DTM , a DTM   runs in timeruns in time   if for all  if for all  and inputs  and inputs  of length  of length ,,  tt ::   NN  NN→→ MM tt nn(( )) nn xx nn

within within  steps. steps.MM xx ↓↓(( )) tt nn(( ))

2. 2. Given a function Given a function , a DTM , a DTM   runs in spaceruns in space   if for all  if for all  and inputs  and inputs  of length of length  ss ::   NN  NN→→ MM ss nn(( )) nn xx

, , while while changingchanging the character in at most  the character in at most  tape cells. tape cells.nn MM xx ↓↓(( )) ss nn(( ))
3. 3. A nondeterministic Turing machine runs within a given time or space bound if A nondeterministic Turing machine runs within a given time or space bound if allall of its of its  

possible computations obey the bound.possible computations obey the bound.
  
Note that although a computation can "loop" within a finite amount of space, the machine is notNote that although a computation can "loop" within a finite amount of space, the machine is not  
regarded as running within that space (in practice, the activation stack or some other tracker wouldregarded as running within that space (in practice, the activation stack or some other tracker would  
overflow).  When the input tape is read-only, the space measure is essentially equivalent to theoverflow).  When the input tape is read-only, the space measure is essentially equivalent to the  
number of cells accessed on the initially-blank worktapes.  When the machine has an output tape,number of cells accessed on the initially-blank worktapes.  When the machine has an output tape,  
one must specify whether its cells count as used space (usually not).one must specify whether its cells count as used space (usually not).
  
Some Simplifying AssumptionsSome Simplifying Assumptions::

• • We can allow real-valued functions such as We can allow real-valued functions such as  with the understanding that  with the understanding that   tt nn   ==  n n nn(( )) loglog tt nn(( ))

really means really means ..    ⌈⌈tt nn ⌉⌉(( ))

• • We presume that every TM reads all of its input We presume that every TM reads all of its input  plus the blank to its right, so that its running plus the blank to its right, so that its running  xx

time is at least time is at least  (where  (where  is understood).  This can be considered as included is understood).  This can be considered as included  nn ++ 11 n n ==   ||xx||
under the definition of "good housekeeping." (Random-access machines can meaningfully rununder the definition of "good housekeeping." (Random-access machines can meaningfully run  
in in  time, even  time, even  time, but we will mostly avoid them.) time, but we will mostly avoid them.)oo nn(( )) OO  n n((loglog ))

• • Except for machines that run in constant space (which are equivalent to DFAs), the smallestExcept for machines that run in constant space (which are equivalent to DFAs), the smallest  
space functions we will consider are space functions we will consider are ..𝛺𝛺 nn((loglog ))

• • Unless otherwise specified, we will consider only time and space bounds built out of theUnless otherwise specified, we will consider only time and space bounds built out of the  
mathematical operators mathematical operators .  Note that powers and roots are included, e.g.,.  Note that powers and roots are included, e.g.,  ++,, --,, **,, // ,, ,,expexp loglog

..      ==   0.50.5 zzzz expexp(( loglog ))
  
The last assumption removes the need to define notions of [The last assumption removes the need to define notions of [fullfull] ] time and space constructibilitytime and space constructibility,,  
though we will point out where this feature is being used in proofs.  The mathematicians G.H. Hardythough we will point out where this feature is being used in proofs.  The mathematicians G.H. Hardy  
and J.E. Littlewood proved a second useful and J.E. Littlewood proved a second useful trichotomytrichotomy feature of these functions: feature of these functions:
  

  

  



TheoremTheorem: If : If  and  and  are real functions built up out of  are real functions built up out of  (but especially not  (but especially not  or or  ff gg ++,, --,, **,, // ,, ,,expexp loglog sinsin

or other trig functions), then either or other trig functions), then either , , , or , or  [i.e.,  [i.e., ]. ]. coscos f f ==  o o gg(( )) f f ==  𝛩 𝛩 gg(( )) f f ==  𝜔 𝜔 gg(( )) g g ==  o o ff(( )) ☒☒
  
We can call these "We can call these "H-L functionsH-L functions" after Hardy and Littlewood; there is a related notion called" after Hardy and Littlewood; there is a related notion called  
elementaryelementary  functionsfunctions but those sometimes allow trig functions.  It is not clear to me whether the but those sometimes allow trig functions.  It is not clear to me whether the  
proof that every H-L function bigger than proof that every H-L function bigger than  is fully time constructible (likewise every H-L function is fully time constructible (likewise every H-L function  nn ++ 11

that is that is  is fully space constructible) has ever been written down by any human being, but is fully space constructible) has ever been written down by any human being, but  𝛺𝛺 nn((loglog ))

we all use it...  From now on, the terms we all use it...  From now on, the terms time functiontime function   and  and space functionspace function   include all these include all these  tt nn(( )) ss nn(( ))
assumptions.assumptions.
  
DefinitionDefinition: For any time function : For any time function  and space function  and space function , using , using  to mean DTM and to mean DTM and  tt nn(( )) ss nn(( )) MM

::N for NTMN for NTM

1. 1. DTIMEDTIME tt nn   ==   LL MM ::  M runs in time t M runs in time t nn[[ (( ))]] {{ (( )) (( ))}}

2. 2. NTIMENTIME tt nn   ==   LL NN ::  N runs in time t N runs in time t nn[[ (( ))]] {{ (( )) (( ))}}

3. 3. DSPACEDSPACE ss nn   ==   LL MM ::  M runs in space s M runs in space s nn[[ (( ))]] {{ (( )) (( ))}}

4. 4. NSPACENSPACE ss nn   ==   LL NN ::  N runs in space s N runs in space s nn[[ (( ))]] {{ (( )) (( ))}}
  
ConventionConvention: For any collection : For any collection  of time or space bounds, in particular one defined by  of time or space bounds, in particular one defined by -notation,-notation,  TT OO

 means the union of  means the union of  over all functions  over all functions  in  in , and so on., and so on.DTIMEDTIME TT[[ ]] DTIMEDTIME tt nn[[ (( ))]] tt nn(( )) TT
  
Definition Definition (some of the "Canonical Complexity Classes"):(some of the "Canonical Complexity Classes"):

1. 1. PP  ==   DTIMEDTIME nnOO 11(( ))

2. 2. NPNP  ==   NTIMENTIME nnOO 11(( ))

3. 3.    (Also called    (Also called ))LL  ==   DSPACEDSPACE OO  n n[[ ((loglog ))]] DLOGDLOG

4. 4.    (Also called    (Also called ))NLNL  ==   NSPACENSPACE OO  n n[[ ((loglog ))]] NLOGNLOG

5. 5. PSPACEPSPACE  ==   DSPACEDSPACE nnOO 11(( ))

6. 6. EE  == DTIMEDTIME 22   OO nn(( ))

7. 7. ..EXPEXP  ==   DTIMEDTIME 22nnOO 11(( ))

  
We will see that the analogously-defined class "We will see that the analogously-defined class " " actually equals " actually equals .  No such.  No such  NPSPACENPSPACE PSPACEPSPACE

identity is known for the analogously-defined classes identity is known for the analogously-defined classes  and  and  with regrad to their with regrad to their  NENE NEXPNEXP

deterministic counterparts, but we will not be so much concerned with them.  There is a sense indeterministic counterparts, but we will not be so much concerned with them.  There is a sense in  
which which  has a "second-class status" along with  has a "second-class status" along with , , ,,  EE DLINDLIN  ==   DTIMEDTIME OO nn[[ (( ))]] NLINNLIN  ==   NTIMENTIME OO nn[[ (( ))]]

, and , and , in that these classes are not closed, in that these classes are not closed  DLBADLBA  ==   DSPACEDSPACE OO nn[[ (( ))]] NLBANLBA  ==   NSPACENSPACE OO nn[[ (( ))]]
downward under the applicable reducibility relations, but...that is getting ahead of our story.  Rightdownward under the applicable reducibility relations, but...that is getting ahead of our story.  Right  
now now  and  and , along with , along with co-co-  will take center stage, beginning with an will take center stage, beginning with an  PP NPNP NPNP  ==   ∼∼ LL ::  L  L ∈∈   NPNP{{ }}

important analogy to important analogy to , , , and , and co-co- .  When we say that a predicate .  When we say that a predicate  is polynomial-time is polynomial-time  RECREC RERE RERE RR xx,, yy(( ))

decidable (etc.), we mean that the language decidable (etc.), we mean that the language  belongs to  belongs to  (etc.) (etc.)⟨⟨xx,, yy⟩⟩ ::  R R xx,, yy  holds holds{{ (( )) }} PP

  

  



  
TheoremTheorem (connecting Theorems 10.2 and 13.12 in Debray's notes): For any language  (connecting Theorems 10.2 and 13.12 in Debray's notes): For any language ,,LL

• •  is c.e. if and only if there is a decidable predicate  is c.e. if and only if there is a decidable predicate  such that for all  such that for all ,,LL RR xx,, yy(( )) x x ∈∈  𝛴 𝛴**

..x x ∈∈  L  L ⟺⟺   ∃∃yy ∈∈ 𝛴𝛴 RR xx,, yy** (( ))

• •  if and only if there are a polynomial-time decidable predicate  if and only if there are a polynomial-time decidable predicate   and aand a  L L ∈∈   NPNP RR xx,, yy(( ))

polynomial polynomial  such that for all  such that for all ,,qq nn(( )) x x ∈∈  𝛴 𝛴**

..x x ∈∈  L  L ⟺⟺   ∃∃y y ∈∈  𝛴 𝛴 ::   ||yy||  ≤≤  q q ||xx|| RR xx,, yy** (( )) (( ))

In both cases, In both cases,  can be linear-time decidable; indeed,  can be linear-time decidable; indeed,  can be the Kleene  can be the Kleene -predicate-predicate  RR xx,, yy(( )) RR TT

 as defined also for NTMs.   as defined also for NTMs.  (The key difference is the polynomial length bound (The key difference is the polynomial length bound , not , not .).)TT NN,, xx,,(( cc)) qq RR
  
Proof.Proof.  We do the   We do the directions first.  Given a total DTM directions first.  Given a total DTM  that on inputs  that on inputs  decides  decides ,,  ⟸⟸ VVRR ⟨⟨xx,, yy⟩⟩ RR xx,, yy(( ))

we can build an NTM we can build an NTM  that on input  that on input  uses nondeterminism to write down (i.e., "guess") a string  uses nondeterminism to write down (i.e., "guess") a string   NN xx yy

and then runs and then runs , accepting if and only if it accepts.  Then , accepting if and only if it accepts.  Then , so , so  is c.e.  Moreover, is c.e.  Moreover,  VV xx,, yyRR(( )) LL NN   ==  L L(( )) LL

if if  runs within some polynomial time bound  runs within some polynomial time bound , where , where , , andand if we can if we can  VVRR pp mm(( )) m m == ||⟨⟨xx,, yy⟩|⟩|  ≈≈ ||xx|| ++ ||yy||  

restrict restrict  given  given  of length  of length , then , then  runs within time  runs within time  which is also a which is also a  ||yy||  ≤≤  q q nn(( )) xx nn NN pp nn ++ qq nn(( (( ))))

polynomial.  Thus, in the second case, polynomial.  Thus, in the second case,  belongs to  belongs to ..    LL NPNP

  
For the For the directions, we start by taking a TM directions, we start by taking a TM  such that  such that  or an NTM  or an NTM  such that such that  ⟹⟹ MM LL MM   ==  L L(( )) NN

 and  and  runs in time bounded by some polynomial  runs in time bounded by some polynomial , respectively.  The strings , respectively.  The strings  we we  LL NN   ==  L L(( )) NN pp nn(( )) yy

need are encodings of sequences of IDs giving valid computations need are encodings of sequences of IDs giving valid computations  on input  on input  by  by  or  or ,,  cc xx MM NN
respectively.  Thus we haverespectively.  Thus we have  
  

 or  or , respectively., respectively.RR xx,, yy   ==  T T MM,, xx,, yy(( )) defdef (( )) RR xx,, yy   ==  T T NN,, xx,, yy(( )) defdef (( ))
  

The final point is that since The final point is that since  also runs within space  also runs within space , the length of , the length of  for halting computations for halting computations  NN pp nn(( )) cc

will be at most will be at most .  Thus in the latter case we get that for all .  Thus in the latter case we get that for all ::qq nn   ≈≈  p p nn(( )) (( ))22 xx

.  .  x x ∈∈  L  L ⟺⟺   ∃∃y y ∈∈  𝛴 𝛴 ::   ||yy||  ≤≤  q q ||xx|| TT NN,, xx,, yy** (( )) (( )) ☒☒
  

  

  



  
The second part of the theorem is often used as the The second part of the theorem is often used as the definitiondefinition of  of .  The polynomial-time DTM .  The polynomial-time DTM   NPNP VVRR

is called a is called a verifierverifier, and given , and given , any , any  such that  such that  and  and  is called a  is called a witnesswitness  x x ∈∈  L L yy RR xx,, yy(( )) ||yy||  ≤≤  q q ||xx||(( ))

(or (or certificatecertificate) ) forfor  .  It is usually easiest to tell that (the language of) a decision problem.  It is usually easiest to tell that (the language of) a decision problem  x x ∈∈  L L

belongs to belongs to  by thinking of a witness and its verification.  For example: by thinking of a witness and its verification.  For example:NPNP

  
SATSAT::
InstanceInstance: A logical formula : A logical formula  in variables  in variables  and operators  and operators ..𝜙𝜙 xx ,, …… ,, xx11 nn ∧∧ ,, ∨∨ ,, ¬¬

QuestionQuestion: : Does there existDoes there exist a truth assignment  a truth assignment  such that  such that ??a a ∈∈ 00,, 11{{ }}nn 𝜙𝜙 aa ,, …… ,, aa   ==  1 1(( 11 nn))
  
The assignment cannot have length longer than the formula, and The assignment cannot have length longer than the formula, and evaluatingevaluating a formula on a given a formula on a given  
assignment is quick to do.  Hunting for a possible assignment is quick to do.  Hunting for a possible satisfying assignmentsatisfying assignment, on the other hand, takes up, on the other hand, takes up  
to to  tries if there is no better way than brute force. tries if there is no better way than brute force.22nn

  
G3CG3C::
InstanceInstance: An undirected graph : An undirected graph ..G G ==   VV,, EE(( ))

  

  



QuestionQuestion: : Does there existDoes there exist a 3-coloring of the nodes of  a 3-coloring of the nodes of ??GG
  
A A 3-coloring3-coloring is a function  is a function  such that for all edges  such that for all edges , , .  The.  The  𝜒𝜒 ::  V  V RR,, GG,, BB→→ {{ }} uu,, vv   ∈∈  E E(( )) 𝜒𝜒 uu   ≠≠  𝜒 𝜒 vv(( )) (( ))

table for table for  needs only  needs only  entries where  entries where , so it has length at most linear in the, so it has length at most linear in the  𝜒𝜒 nn n n ==   ||VV||  ≪≪  N  N ==   ||GG||

encoding length encoding length  of  of  (often  (often .  And it is easy to .  And it is easy to verifyverify that a  that a givengiven coloring  coloring  is correct. is correct.NN GG N N ≈≈  n n22)) 𝜒𝜒
  
Corollary:Corollary: For any language  For any language ,,L'L'

• •   if and only if there is a decidable predicate   if and only if there is a decidable predicate  such that for all  such that for all ,,L' L' ∈∈   coco--RERE R'R' xx,, yy(( )) x x ∈∈  𝛴 𝛴**

..x x ∈∈  L'  L' ⟺⟺   ∀∀yy ∈∈ 𝛴𝛴 RR xx,, yy** (( ))

• •  if and only if there are a polynomial-time decidable predicate  if and only if there are a polynomial-time decidable predicate   and aand a  L' L' ∈∈   coco--NPNP  R'R' xx,, yy(( ))

polynomial polynomial  such that for all  such that for all ,,qq nn(( )) x x ∈∈  𝛴 𝛴**

..x x ∈∈  L'  L' ⟺⟺   ∀∀y y ∈∈  𝛴 𝛴 ::   ||yy||  ≤≤  q q ||xx|| R'R' xx,, yy** (( )) (( ))

  
TAUTTAUT::
Instance: A Boolean formula Instance: A Boolean formula , same as for SAT., same as for SAT.𝜙'𝜙'

Question: Is Question: Is  a  a tautologytautology, that is, true , that is, true for allfor all assignments? assignments?𝜙'𝜙'
  
Note that Note that  is unsatisfiable  is unsatisfiable every assignment every assignment  makes  makes  false  false every assignment every assignment   𝜙𝜙 ≡≡ aa 𝜙𝜙 aa(( )) ⟺⟺ aa

makes makes  true, where  true, where .  Thus TAUT is essentially the complement of SAT..  Thus TAUT is essentially the complement of SAT.𝜙'𝜙' aa(( )) 𝜙' 𝜙' ==   ¬¬𝜙𝜙
  

  
[Next: more problems in these classes, polynomial-time many-one reductions, and completeness.][Next: more problems in these classes, polynomial-time many-one reductions, and completeness.]
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∃∃qq ∀∀qqNote differences fromNote differences from
the unbounded the unbounded 
computability case: computability case: 
NP intersect co-NP isNP intersect co-NP is
not known (or believed) not known (or believed) 
to equal P, and the to equal P, and the 
quantifiers are quantifiers are length-length-
boundedbounded by a polynomial. by a polynomial.


