Picking up the Independent Set example, here is how we frame and state the reduction. There are three parts which I call "Construction", "Complexity" (often short), and "Correctness" of the reduction.

Given any 3CNF formula $\phi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$, we build a graph $G=(V, E)$ and set $k=m+n$ to get an equivalent instance (G, k) of Independent Set as follows:

- V consists of $2 n$ "rung nodes" labeled $x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots, x_{n}, \bar{x}_{n}$ and (up to) $3 m$ "clause triangle nodes". (It is exactly $3 m$ nodes if ϕ is in "strict 3CNF", which you are allowed to assume.)
- E first has n "rung edges", each between some x_{i} and its negation \bar{x}_{i}.
- Then E has $3 m$ "clause gadget edges" to make a triangle for each clause.
- Finally and most critically, E has $3 m$ "crossing edges". For each occurrence of a positive literal x_{i} in a clause gadget, the edge goes to the negated \bar{x}_{i} in its "rung". (The edges and whole graph are undirected.) For each occurrence of a negative literal \bar{x}_{i} in a clause gadget, the edge goes to the positive x_{i} in its "rung".

This finishes the contruction of $G=(V, E)$ and k in general.

Complexity: G can be build with simple passes over ϕ. [Usually this can be done in a sentence or two.]

Correctness: [This takes time and care...To be fully safe, show both of these implications:

- If ϕ has a satisfying assignment $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then from a we can make choices of the existentially questioned object (in this case, an independent set) to meet the stated requirements (here, including meeting the size target k).
- If there is an object (i.e., "witness") that answers "yes" to the problem, then from that object we can find a satisfying assignment to ϕ.
Together, these show that ϕ is satisfiable \Longleftrightarrow the answer to the target instance (G, k) is "yes". This completes the requirements of reducing 3SAT to the target problem (by a polynomial-time many-one reduction), so the target problem is NP-hard. Since it belongs to NP, it is NP-complete.]

For this reduction, we make the "rungs" into actual edges between each x_{i} and its negation \bar{x}_{i} and give each clause three nodes to make a triangle. Each clause node is labeled by a literal in the clause. Later we will include the clause index j, not just the variable index i, when identifying this occurrence of the literal in a clause to define V as a set, where $G=(V, E)$.

The immediate effect, even before we consider an example of a formula, is that the maximum possible k for an independent set S in the graph G is $n+m$. The most one can do is take one vertex from each rung and one from each triangle to make S. Note that the vertices chosen from each rung specify a truth assignment to the variables.

The final goal of the reduction is to add a third set of edges, which I call "crossing edges", to enforce that a set S of size $n+m$ is possible if and only if its corresponding assignment satisfies the formula. The basic idea, even before we consider a formula, is as follows.

- Suppose clause C_{1} includes the positive literal x_{1}. Then we connect a crossing edge from x_{1} in C_{1} to the opposite literal \bar{x}_{1} in the rung.
- Suppose clause C_{2} includes the negated literal \bar{x}_{3}. Then we connect a crossing edge from \bar{x}_{3} in C_{2} to the opposite literal in the rung, which is just x_{3}.

The edges ensure that choosing a satisfied literal in each clause will not conflict with the truth assignment. Here is an example formula.

$$
\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)
$$

There are 9 crossing edges in all:

Note that a choice of vertices for S is not part of $G--$-not part of the reduction function f itself. It is only part of the analysis of why the reduction is correct.

To illustrate the analysis, note that the example formula ϕ is satisfiable. In fact, it has many satisfying assignments. (To make a strict 3CNF formula that is unsatisfiable and not use trivialities like duplicate literals in the same clause, one needs to have at least 8 clauses.) For $a=1101$ and $\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)$, one of them is to set x_{1} true and x_{3} false; then x_{2} and x_{4} become "don't-cares":
[2023 Note: Rather than jump between diagrams that were based on how I lectured in previous years--including once with 80-minute Tue.+Thu. lectures---what I did was stay longer with one diagram and spend more time moving and copying the choice-making rings around the nodes. So what follows does not exactly represent how I lectured, but it shows much the same things.]

Or we can try setting x_{1} false and x_{2} true:
$\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)$,

This blocks two of the literals in C_{1}. We have to set x_{3} true. This blocks \bar{x}_{3} in C_{2} and x_{1} is already blocked there. Luckily we can choose x_{2} in C_{2}. Since we already have \bar{x}_{1} as an option in C_{3} (but not \bar{x}_{3}), and variable x_{4} is not connected elsewhere, it is again a don't care.

One other thing happened in the diagram: each clause node added a subscript for the clause. This enables us to define the reduction formally by specifying the graph in set notation. [Well, in lecture this time, in 2023, I said this much subscripting was yucky and would be unnecessary.]
$V=\left\{x_{i}, \bar{x}_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i j}: C_{j}\right.$ has $\left.x_{i}\right\} \cup\left\{\bar{x}_{i, j}: C_{j}\right.$ has $\left.\bar{x}_{i}\right\}$
$E=E_{\text {rungs }} \cup E_{\text {clauses }} \cup E_{\text {crossing }}$
$E_{\text {rungs }}=\left\{\left(x_{i}, \bar{x}_{i}\right): 1 \leq i \leq n\right\}$
$E_{\text {clauses }}=\left\{\left(x_{i, j}, x_{k, j}\right): C_{j}\right.$ has x_{i} and $\left.x_{k}\right\} \cup\left\{\left(\bar{x}_{i, j}, \bar{x}_{k, j}\right): C_{j}\right.$ has \bar{x}_{i} and $\left.\bar{x}_{k}\right\}$
$\cup\left\{\left(x_{i, j}, \bar{x}_{k, j}\right): C_{j}\right.$ has x_{i} and $\left.\bar{x}_{k}\right\}$.
[Side Q: Do we need to add " $\cup\left\{\left(\bar{x}_{i, j}, x_{k, j}\right): C_{j}\right.$ has \bar{x}_{i} and $\left.x_{k}\right\}$? No: things are symmetric.]
$E_{\text {crossing }}=\left\{\left(x_{i}, \bar{x}_{i, j}\right): \bar{x}_{i} \in C_{j}\right\} \cup\left\{\left(\bar{x}_{i}, x_{i, j}\right): x_{i} \in C_{j}\right\}$.
And, of course, $k=n+m$ completes the definition of the reduction function $f(\phi)=(G, k)$. The one benefit of laying out these sets is that they show exactly how to compute the graph, and how big it gets. We have $|V|=2 n+3 m$ and $|E|=n+3 m+3 m=n+6 m$. Both are in fact linear in the size
order- $(n+m)$ of ϕ. The edge lists can be streamed in one pass through the variables and clauses. [Note that although I have not settled on any one formal definition of "streaming algorithm", the idea of them is useful to sharpen the understanding of how the reductions are efficiently computable.] This is indeed a quasilinear-time (DQL) reduction.

So we have given the Construction, shown that its Complexity is well within polynomial time, so it remains to show Correctness: $\phi \in 3 S A T \Longleftrightarrow f(\phi) \in I N D S E T$. That is, we need to show
the 3CNF formula ϕ is satisfiable $\Longleftrightarrow G$ has an independent set S of size $k=m+n$ (the max possible size)
(\Longrightarrow) : Suppose a satisfies ϕ. Form S by taking the n rung nodes set true by a and choosing one node from each clause that is satisfied. Then by similar reasoning about the crossing edges, S is an independent set of size $n+m$ in G. [Note that even after fixing a, where you've made choices also for "don't-care" variables, there may be multiple S sets because two or three nodes might be satisfied in any given clause. So it is not a 1-to-1 correspondence. But it does have the property Levin cared about, which is that a choice of S uniquely identifies a satisfying assignment.]
(\Longleftarrow) : Given S, it has exactly n nodes from rungs and one node from each clause. For each i, S has either x_{i} or \bar{x}_{i}. The choices determine a unique truth assignment a. Now consider any clause C_{j} and let $x_{i, j}$ or $\bar{x}_{i, j}$ be the label of the node chosen. In the former case, there is a crossing edge from $x_{i, j}$ to \bar{x}_{i}. Now \bar{x}_{i} cannot be the node in S from the i-th rung because that would give S a clash. So the rung node in S must be x_{i}, so the corresponding assignment makes x_{i} true, and that satisfies the clause C_{j}. In the latter case, there is a crossing edge from $\bar{x}_{i, j}$ to x_{i}. Now x_{i} cannot be the node in S from the i-th rung because that would give S a clash. So the rung node in S must be \bar{x}_{i}, so the corresponding assignment makes x_{i} false. Since C_{j} has $\bar{x}_{i, j}$ in this case, that likewise satisfies the clause C_{j}. Since C_{j} is arbitrary, this means a satisfies ϕ. 区

Since IND SET $\leq{ }_{m}^{p}$ CLIQUE and IND SET $\leq{ }_{m}^{p}$ VERTEX COVER these problems (which we showed to be in NP) are also NP-complete.

