
CSE491/596, Mon. 10/23/23: Second Lecture on NP-Completeness

Picking up the Independent Set example, here is how we frame and state the reduction. There are
three parts which I call "Construction", "Complexity" (often short), and "Correctness" of the reduction.

Given any 3CNF formula , we build a graph and 𝜙 x , … , x = C ∧ C ∧ ⋯ ∧ C(1 n) 1 2 m G = V, E()

set to get an equivalent instance of Independent Set as follows:k = m + n G, k()

• consists of "rung nodes" labeled and (up to) "clause triangle V 2n x , , x , , … , x ,1 x⏨1 2 x⏨2 n x⏨n 3m

nodes". (It is exactly nodes if is in "strict 3CNF", which you are allowed to assume.)3m 𝜙

• first has "rung edges", each between some and its negation .E n xi x⏨i

• Then has "clause gadget edges" to make a triangle for each clause.E 3m
• Finally and most critically, has "crossing edges". For each occurrence of a positive literal E 3m

 in a clause gadget, the edge goes to the negated in its "rung". (The edges and whole xi x⏨i

graph are undirected.) For each occurrence of a negative literal in a clause gadget, the edge x⏨i

goes to the positive in its "rung". x i

This finishes the contruction of and in general. G = V, E() k

Complexity: can be build with simple passes over . [Usually this can be done in a sentence or two.]G 𝜙

Correctness: [This takes time and care...To be fully safe, show both of these implications:

• If has a satisfying assignment , then from we can make choices of the 𝜙 a = a , a , … , a(1 2 n) a
existentially questioned object (in this case, an independent set) to meet the stated requirements
(here, including meeting the size target).k

• If there is an object (i.e., "witness") that answers "yes" to the problem, then from that object we
can find a satisfying assignment to .𝜙

Together, these show that is satisfiable the answer to the target instance is "yes". This 𝜙 ⟺ G, k()

completes the requirements of reducing 3SAT to the target problem (by a polynomial-time many-one
reduction), so the target problem is NP-hard. Since it belongs to NP, it is NP-complete.]

For this reduction, we make the "rungs" into actual edges between each and its negation and give xi x⏨i

each clause three nodes to make a triangle. Each clause node is labeled by a literal in the clause.
Later we will include the clause index , not just the variable index , when identifying this occurrence of j i
the literal in a clause to define as a set, where .V G = V, E()

.𝜙 = x ∨ ∨ x ∧ x ∨ ∨ (3 x⏨2 4) (1 x⏨2 x⏨3)

The immediate effect, even before we consider an example of a formula, is that the maximum possible
 for an independent set in the graph is . The most one can do is take one vertex from each k S G n + m

rung and one from each triangle to make . Note that the vertices chosen from each rung specify a S
truth assignment to the variables.

The final goal of the reduction is to add a third set of edges, which I call "crossing edges", to enforce
that a set of size is possible if and only if its corresponding assignment satisfies the formula. S n + m
The basic idea, even before we consider a formula, is as follows.

• Suppose clause includes the positive literal . Then we connect a crossing edge from in C1 x1 x1

 to the opposite literal in the rung. C1 x⏨1

• Suppose clause includes the negated literal . Then we connect a crossing edge from C2 x⏨3 x⏨3

in to the opposite literal in the rung, which is just .C2 x3

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨n xn

. .
 .

. .
 .

C1

C2

Cm

x3

x⏨2

x⏨2

xn

x1

x⏨3

The edges ensure that choosing a satisfied literal in each clause will not conflict with the truth
assignment. Here is an example formula.

.𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (1 x⏨2 3) (1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

There are 9 crossing edges in all:

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨n xn

. .
 . . .
 .

C1

C2

Cm

x⏨3

x1

k = n + m

G =

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨4 x4

C1

C2

C3

x⏨3

x1

x⏨2

x3

x1

x2

x⏨1

x⏨3

x⏨4

k = n + m

G =

Note that a choice of vertices for is not part of ---not part of the reduction function itself. It is only S G f
part of the analysis of why the reduction is correct.

To illustrate the analysis, note that the example formula is satisfiable. In fact, it has many satisfying 𝜙
assignments. (To make a strict 3CNF formula that is unsatisfiable and not use trivialities like duplicate
literals in the same clause, one needs to have at least 8 clauses.) For and a = 1101

,𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (1 x⏨2 3) (1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

one of them is to set true and false; then and become "don't-cares":x1 x3 x2 x4

[2023 Note: Rather than jump between diagrams that were based on how I lectured in previous years---
including once with 80-minute Tue.+Thu. lectures---what I did was stay longer with one diagram and
spend more time moving and copying the choice-making rings around the nodes. So what follows does
not exactly represent how I lectured, but it shows much the same things.]

Or we can try setting false and true:x1 x2

,𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (1 x⏨2 3) (1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨4
x4

C1

C2

C3

x⏨3

x1

x⏨2

x3

x1

x2

x⏨1

x⏨3

x⏨4

This blocks two of the literals in . We have to set true. This blocks in and is already C1 x3 x⏨3 C2 x1

blocked there. Luckily we can choose in . Since we already have as an option in (but not x2 C2 x⏨1 C3

), and variable is not connected elsewhere, it is again a don't care.x⏨3 x4

One other thing happened in the diagram: each clause node added a subscript for the clause. This
enables us to define the reduction formally by specifying the graph in set notation. [Well, in lecture this
time, in 2023, I said this much subscripting was yucky and would be unnecessary.]

V = x , : 1 ≤ i ≤ n ∪ x : C has x ∪ : C has { i x⏨i } { ij j i } {x⏨i,j j x⏨i }

E = E ∪ E ∪ Erungs clauses crossing

E = x , : 1 ≤ i ≤ nrungs {(i x⏨i) }

E = x , x : C has x and x ∪ , : C has and clauses {(i,j k,j) j i k } {(x⏨i,j x⏨k,j) j x⏨i x⏨k }

 ∪ x , : C has x and .{(i,j x⏨k,j) j i x⏨k }

[Side Q: Do we need to add " ? No: things are symmetric.]∪ , x : C has and x{(x⏨i,j k,j) j x⏨i k }

.E = x , : ∈ C ∪ , x : x ∈ Ccrossing {(i x⏨i,j) x⏨i j } {(x⏨i i,j) i j }

And, of course, completes the definition of the reduction function . The one k = n + m f 𝜙 = G, k() ()

benefit of laying out these sets is that they show exactly how to compute the graph, and how big it gets.
 We have and . Both are in fact linear in the size |V| = 2n + 3m |E| = n + 3m + 3m = n + 6m

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨4 x4

C1

C2

C3

x⏨3,2

x1,1

x⏨2,1

x3,1

x1,2

x2,2

x⏨1,3

x⏨3,3

x⏨4,3

k = n + m

G =

order- of . The edge lists can be streamed in one pass through the variables and clauses. n + m() 𝜙
[Note that although I have not settled on any one formal definition of "streaming algorithm", the idea of
them is useful to sharpen the understanding of how the reductions are efficiently computable.] This is
indeed a quasilinear-time (DQL) reduction.

So we have given the Construction, shown that its Complexity is well within polynomial time, so it
remains to show Correctness: . That is, we need to show 𝜙 ∈ 3SAT ⟺ f 𝜙 ∈ INDSET()

the 3CNF formula is satisfiable has an independent set of size (the max 𝜙 ⟺ G S k = m + n
possible size)

: Suppose satisfies . Form by taking the rung nodes set true by and choosing one ⟹() a 𝜙 S n a
node from each clause that is satisfied. Then by similar reasoning about the crossing edges, is an S
independent set of size in . [Note that even after fixing , where you've made choices also for n + m G a
"don't-care" variables, there may be multiple sets because two or three nodes might be satisfied in S
any given clause. So it is not a 1-to-1 correspondence. But it does have the property Levin cared
about, which is that a choice of uniquely identifies a satisfying assignment.]S

: Given , it has exactly nodes from rungs and one node from each clause. For each , has ⟸() S n i S
either or . The choices determine a unique truth assignment . Now consider any clause and xi x⏨i a Cj

let or be the label of the node chosen. In the former case, there is a crossing edge from to xi,j x⏨i,j xi,j

. Now cannot be the node in from the -th rung because that would give a clash. So the rung x⏨i x⏨i S i S

node in must be , so the corresponding assignment makes true, and that satisfies the clause . S xi xi Cj

In the latter case, there is a crossing edge from to . Now cannot be the node in from the -th x⏨i,j xi xi S i

rung because that would give a clash. So the rung node in must be , so the corresponding S S x⏨i

assignment makes false. Since has in this case, that likewise satisfies the clause . Since xi Cj x⏨i,j Cj

 is arbitrary, this means satisfies . Cj a 𝜙 ☒

Since and these problems (which we IND SET ≤ CLIQUEp
m IND SET ≤ VERTEX COVERp

m

showed to be in) are also NP-complete. NP

