
CSE491/596, Mon. 10/23/23: Second Lecture on NP-Completeness
 
Picking up the Independent Set example, here is how we frame and state the reduction.  There are 
three parts which I call "Construction", "Complexity" (often short), and "Correctness" of the reduction.
 
Given any 3CNF formula , we build a graph  and 𝜙 x , … , x  =  C  ∧  C  ∧ ⋯ ∧  C( 1 n) 1 2 m G = V, E( )

set  to get an equivalent instance  of Independent Set as follows:k =  m + n G, k( )

 
•  consists of  "rung nodes" labeled  and (up to)  "clause triangle V 2n x , , x , , … , x ,1 x⏨1 2 x⏨2 n x⏨n 3m

nodes".  (It is exactly  nodes if  is in "strict 3CNF", which you are allowed to assume.)3m 𝜙

•  first has  "rung edges", each between some  and its negation .E n xi x⏨i

• Then  has  "clause gadget edges" to make a triangle for each clause.E 3m
• Finally and most critically,  has  "crossing edges".  For each occurrence of a positive literal E 3m

 in a clause gadget, the edge goes to the negated  in its "rung".  (The edges and whole xi x⏨i

graph are undirected.)  For each occurrence of a negative literal  in a clause gadget, the edge x⏨i

goes to the positive in its "rung". x  i
 
This finishes the contruction of  and  in general.  G = V, E( ) k
 
Complexity:  can be build with simple passes over .  [Usually this can be done in a sentence or two.]G 𝜙
 
Correctness: [This takes time and care...To be fully safe, show both of these implications:

• If  has a satisfying assignment , then from  we can make choices of the 𝜙 a =  a , a , … , a( 1 2 n) a
existentially questioned object (in this case, an independent set) to meet the stated requirements 
(here, including meeting the size target ).k

• If there is an object (i.e., "witness") that answers "yes" to the problem, then from that object we 
can find a satisfying assignment to .𝜙

Together, these show that  is satisfiable the answer to the target instance  is "yes".  This 𝜙 ⟺ G, k( )

completes the requirements of reducing 3SAT to the target problem (by a polynomial-time many-one 
reduction), so the target problem is NP-hard.  Since it belongs to NP, it is NP-complete.]
 
For this reduction, we make the "rungs" into actual edges between each  and its negation  and give xi x⏨i

each clause three nodes to make a triangle.  Each clause node is labeled by a literal in the clause.  
Later we will include the clause index , not just the variable index , when identifying this occurrence of j i
the literal in a clause to define  as a set, where .V G =  V, E( )

 

 

 



.𝜙 =  x  ∨   ∨  x  ∧  x  ∨   ∨  ( 3 x⏨2 4) ( 1 x⏨2 x⏨3)

 
The immediate effect, even before we consider an example of a formula, is that the maximum possible 
 for an independent set  in the graph  is .  The most one can do is take one vertex from each k S G n + m

rung and one from each triangle to make .  Note that the vertices chosen from each rung specify a S
truth assignment to the variables. 
 
The final goal of the reduction is to add a third set of edges, which I call "crossing edges", to enforce 
that a set  of size  is possible if and only if its corresponding assignment satisfies the formula.  S n + m
The basic idea, even before we consider a formula, is as follows.   
 

• Suppose clause  includes the positive literal .  Then we connect a crossing edge from  in C1 x1 x1

 to the opposite literal  in the rung.  C1 x⏨1

• Suppose clause  includes the negated literal .  Then we connect a crossing edge from  C2 x⏨3 x⏨3

in  to the opposite literal in the rung, which is just .C2 x3
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The edges ensure that choosing a satisfied literal in each clause will not conflict with the truth 
assignment.  Here is an example formula.
 

.𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

 
There are 9 crossing edges in all:
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Note that a choice of vertices for  is not part of ---not part of the reduction function  itself.  It is only S G f
part of the analysis of why the reduction is correct.  
 
To illustrate the analysis, note that the example formula  is satisfiable.  In fact, it has many satisfying 𝜙
assignments.  (To make a strict 3CNF formula that is unsatisfiable and not use trivialities like duplicate 
literals in the same clause, one needs to have at least 8 clauses.)  For   and a = 1101

,𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

one of them is to set  true and  false; then  and  become "don't-cares":x1 x3 x2 x4

 
[2023 Note: Rather than jump between diagrams that were based on how I lectured in previous years---
including once with 80-minute Tue.+Thu. lectures---what I did was stay longer with one diagram and 
spend more time moving and copying the choice-making rings around the nodes.  So what follows does 
not exactly represent how I lectured, but it shows much the same things.]
 

 
Or we can try setting  false and  true:x1 x2

,𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)
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This blocks two of the literals in .  We have to set  true.  This blocks  in  and  is already C1 x3 x⏨3 C2 x1

blocked there.  Luckily we can choose  in .  Since we already have  as an option in  (but not x2 C2 x⏨1 C3

), and variable  is not connected elsewhere, it is again a don't care.x⏨3 x4

 
One other thing happened in the diagram: each clause node added a subscript for the clause.  This 
enables us to define the reduction formally by specifying the graph in set notation.  [Well, in lecture this 
time, in 2023, I said this much subscripting was yucky and would be unnecessary.]
 
V =  x ,  :  1 ≤  i ≤  n  ∪  x :  C  has x  ∪  :  C  has { i x⏨i } { ij j i } {x⏨i,j j x⏨i }

E =  E  ∪  E  ∪  Erungs clauses crossing

E  =  x , :  1 ≤  i ≤  nrungs {( i x⏨i) }

E  =  x , x :  C  has x  and x  ∪  , :  C  has  and  clauses {( i,j k,j) j i k } {(x⏨i,j x⏨k,j) j x⏨i x⏨k }

              ∪  x , :  C  has x  and .{( i,j x⏨k,j) j i x⏨k }

 
[Side Q: Do we need to add " ?  No: things are symmetric.]∪  , x :  C  has  and x{(x⏨i,j k,j) j x⏨i k }

 
.E  =  x , :   ∈ C  ∪  , x :  x  ∈ Ccrossing {( i x⏨i,j) x⏨i j } {(x⏨i i,j) i j }

 
And, of course,  completes the definition of the reduction function .  The one k =  n + m f 𝜙  =  G, k( ) ( )

benefit of laying out these sets is that they show exactly how to compute the graph, and how big it gets. 
 We have  and .  Both are in fact linear in the size |V| =  2n + 3m |E| =  n +  3m +  3m =  n +  6m
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order-  of .  The edge lists can be streamed in one pass through the variables and clauses.  n + m( ) 𝜙
[Note that although I have not settled on any one formal definition of "streaming algorithm", the idea of 
them is useful to sharpen the understanding of how the reductions are efficiently computable.]  This is 
indeed a quasilinear-time (DQL) reduction.
 
So we have given the Construction, shown that its Complexity is well within polynomial time, so it 
remains to show Correctness: .  That is, we need to show 𝜙 ∈  3SAT ⟺  f 𝜙  ∈  INDSET( )

 
the 3CNF formula  is satisfiable  has an independent set of size  (the max 𝜙 ⟺ G S k =  m + n
possible size)   
 

: Suppose  satisfies .  Form  by taking the  rung nodes set true by  and choosing one ⟹( ) a 𝜙 S n a
node from each clause that is satisfied.  Then by similar reasoning about the crossing edges,  is an S
independent set of size  in .  [Note that even after fixing , where you've made choices also for n + m G a
"don't-care" variables, there may be multiple  sets because two or three nodes might be satisfied in S
any given clause.  So it is not a 1-to-1 correspondence.  But it does have the property Levin cared 
about, which is that a choice of  uniquely identifies a satisfying assignment.]S
 

: Given , it has exactly  nodes from rungs and one node from each clause.  For each ,  has ⟸( ) S n i S
either  or .  The choices determine a unique truth assignment .  Now consider any clause  and xi x⏨i a Cj

let  or  be the label of the node chosen.  In the former case, there is a crossing edge from  to xi,j x⏨i,j xi,j

.  Now  cannot be the node in  from the -th rung because that would give  a clash.  So the rung x⏨i x⏨i S i S

node in  must be , so the corresponding assignment makes  true, and that satisfies the clause . S xi xi Cj

In the latter case, there is a crossing edge from  to .  Now  cannot be the node in  from the -th x⏨i,j xi xi S i

rung because that would give  a clash.  So the rung node in  must be , so the corresponding S S x⏨i

assignment makes  false.  Since  has  in this case, that likewise satisfies the clause .    Since xi Cj x⏨i,j Cj

 is arbitrary, this means  satisfies .  Cj a 𝜙 ☒
 

Since  and  these problems (which we IND SET ≤  CLIQUEp
m IND SET ≤  VERTEX COVERp

m

showed to be in ) are also NP-complete.  NP

 

 


