CSE491/596, Mon. 10/23/23: Second Lecture on NP-Completeness

Picking up the Independent Set example, here is how we frame and state the reduction. There are
three parts which | call "Construction”, "Complexity" (often short), and "Correctness" of the reduction.

Given any 3CNF formula ¢(x1, ..., x,) = C1 A C; A .-+ A C,y, we build a graph G = (V, E) and
setk = m + n to get an equivalent instance (G, k) of Independent Set as follows:

« V consists of 21 "rung nodes" labeled x1, X1, X3, X5, ..., X,;, X,, and (up to) 3m "clause triangle
nodes". (It is exactly 3m nodes if ¢ is in "strict 3CNF", which you are allowed to assume.)

« E first has 7 "rung edges", each between some x; and its negation x;.

« Then E has 3m "clause gadget edges" to make a triangle for each clause.

« Finally and most critically, E has 3m "crossing edges". For each occurrence of a positive literal
x; in a clause gadget, the edge goes to the negated x; in its "rung". (The edges and whole
graph are undirected.) For each occurrence of a negative literal Ei in a clause gadget, the edge
goes to the positive x; in its "rung".

This finishes the contruction of G = (V, E) and k in general.
Complexity: G can be build with simple passes over ¢. [Usually this can be done in a sentence or two.]

Correctness: [This takes time and care...To be fully safe, show both of these implications:
« If ¢ has a satisfying assignmenta = (aj,a,, ..., 4a,), then from a we can make choices of the
existentially questioned object (in this case, an independent set) to meet the stated requirements
(here, including meeting the size target k).
+ If there is an object (i.e., "witness") that answers "yes" to the problem, then from that object we
can find a satisfying assignment to ¢.
Together, these show that ¢ is satisfiable < the answer to the target instance (G, k) is "yes". This
completes the requirements of reducing 3SAT to the target problem (by a polynomial-time many-one
reduction), so the target problem is NP-hard. Since it belongs to NP, it is NP-complete.]

For this reduction, we make the "rungs" into actual edges between each x; and its negation x; and give
each clause three nodes to make a triangle. Each clause node is labeled by a literal in the clause.
Later we will include the clause index j, not just the variable index 7, when identifying this occurrence of
the literal in a clause to define V as a set, where G = (V, E).

The immediate effect, even before we consider an example of a formula, is that the maximum possible
k for an independent set S in the graph G is 7 + m. The most one can do is take one vertex from each
rung and one from each triangle to make S. Note that the vertices chosen from each rung specify a
truth assignment to the variables.

The final goal of the reduction is to add a third set of edges, which | call "crossing edges", to enforce
that a set S of size n + m is possible if and only if its corresponding assignment satisfies the formula.
The basic idea, even before we consider a formula, is as follows.

 Suppose clause C; includes the positive literal x;. Then we connect a crossing edge from x7 in
C; to the opposite literal x, in the rung.

« Suppose clause C, includes the negated literal x;. Then we connect a crossing edge from x,
in C, to the opposite literal in the rung, which is just x3.

reami X1 C,

X1

k =n+m
Xo X2

The edges ensure that choosing a satisfied literal in each clause will not conflict with the truth
assignment. Here is an example formula.

There are 9 crossing edges in all:

k =n+m

Note that a choice of vertices for S is not part of G---not part of the reduction function f itself. It is only
part of the analysis of why the reduction is correct.

To illustrate the analysis, note that the example formula ¢ is satisfiable. In fact, it has many satisfying
assignments. (To make a strict 3CNF formula that is unsatisfiable and not use trivialities like duplicate
literals in the same clause, one needs to have at least 8 clauses.) For a = 1101 and

¢ = (x1 VX, Vxs) A VxVx)A(@ Vx,Vx,

one of them is to set x; true and x; false; then x, and x4 become "don't-cares":

[2023 Note: Rather than jump between diagrams that were based on how | lectured in previous years---
including once with 80-minute Tue.+Thu. lectures---what | did was stay longer with one diagram and
spend more time moving and copying the choice-making rings around the nodes. So what follows does
not exactly represent how | lectured, but it shows much the same things.]

Or we can try setting x; false and x, true:

k =n+m

X453

This blocks two of the literals in C;. We have to set x5 true. This blocks E3 in C, and x; is already
blocked there. Luckily we can choose x; in C,. Since we already have X, as an option in C3 (but not
E3), and variable x, is not connected elsewhere, it is again a don't care.

One other thing happened in the diagram: each clause node added a subscript for the clause. This
enables us to define the reduction formally by specifying the graph in set notation. [Well, in lecture this
time, in 2023, | said this much subscripting was yucky and would be unnecessary.]

V=Ax, x;:1 <i<nbU{x;:Cjhasx;} U {ii,j: Cj has x;}

E = Erungs U Eclauses U Ecrossing

Ejings = {(xi;,x): 1 < i < n}

Epuses = {(xl-/j, xj): C; has x; and x;.} U {(ii’j, Ek’]-): C; has x; and x}
U {(x;j, Xy ;) : Cjhas x; and x}.

[Side Q: Do we need to add " U {(J_ci/]., xx,;): Cjhas x; and x;}? No: things are symmetric.]

Ecrossing = {(xir xi,j): X € C]} U {(zi’xi/]'): Xi € C]}

And, of course, k = n + m completes the definition of the reduction function f(¢) = (G, k). The one
benefit of laying out these sets is that they show exactly how to compute the graph, and how big it gets.
We have |V| = 2n+3mand |E| = n + 3m + 3m = n + 6m. Both are in fact linear in the size

order-(n + m) of ¢. The edge lists can be streamed in one pass through the variables and clauses.
[Note that although | have not settled on any one formal definition of "streaming algorithm", the idea of
them is useful to sharpen the understanding of how the reductions are efficiently computable.] This is
indeed a quasilinear-time (DQL) reduction.

So we have given the Construction, shown that its Complexity is well within polynomial time, so it
remains to show Correctness: ¢ € 3SAT < f(¢) € INDSET. Thatis, we need to show

the 3CNF formula ¢ is satisfiable <= G has an independent set S of size k = m+n (the max
possible size)

(=): Suppose a satisfies ¢p. Form S by taking the 7 rung nodes set true by a and choosing one
node from each clause that is satisfied. Then by similar reasoning about the crossing edges, S is an
independent set of size n + m in G. [Note that even after fixing a, where you've made choices also for
"don't-care" variables, there may be multiple S sets because two or three nodes might be satisfied in
any given clause. So it is not a 1-to-1 correspondence. But it does have the property Levin cared
about, which is that a choice of S uniquely identifies a satisfying assignment.]

(&<): Given S, it has exactly n nodes from rungs and one node from each clause. For each i, S has
either x; or x;. The choices determine a unique truth assignment a. Now consider any clause C]- and

let x; ; or Ei/]- be the label of the node chosen. In the former case, there is a crossing edge from x; ; to
X;. Now x; cannot be the node in S from the i-th rung because that would give S a clash. So the rung

node in S must be x;, so the corresponding assignment makes x; true, and that satisfies the clause C]-.

In the latter case, there is a crossing edge from Ei,]- to x;. Now x; cannot be the node in S from the i-th
rung because that would give S a clash. So the rung node in S must be Ei, so the corresponding
assignment makes x; false. Since Cj has Ei,j in this case, that likewise satisfies the clause C]-. Since
Cj is arbitrary, this means a satisfies ¢.

Since IND SET < ? CLIQUE and IND SET < VERTEX COVER these problems (which we
showed to be in NP) are also NP-complete.

