
CSE491/596 Lecture Wed. 11/4: NP Completeness By Component Design III

Now we consider the Graph 3-Coloring Problem.

G3C
Instance: Just an undirected graph (no " ").G = V, E() k
Question: Is there a map such that for all , ?𝜒 : V R, G, B→ { } u, v ∈ E() 𝜒 u ≠ 𝜒 v() ()

The Greek chi is for "chromo-" meaning "color". The language of 3-colorable graphs is clearly in : NP

we just guess the coloring, which is a string in , and verify the coloring on each of R, G, B{ }n

 edges. To show it is NP-complete, we use the same basic rungs-and-gadgets m ≤ = O nn
2

2

layout, but with one or two twists.

The first thing to think about is how to establish a correspondence between colorings and truth
assignments to begin with, before thinking about "good" colorings (i.e., those that meet the "such that"
property of having no monochrome edges) vis-à-vis satisfying assignments. The natural idea is to give
each rung an edge so that each and pair must be given different colors so that one color stands xi x⏨i

for true and the other for false. Well, we have to limit that to two colors for each rung, so we do so by
connecting all rung nodes to a special node called for the intent to color it blue. So on the ladder 2n B
side, we have [2023 Note: As in the previous lecture, I did more on early diagrams rather than jump to
as new diagram each time I made some changes.]:

𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (1 x⏨2 3) (1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨n xn

. .
 .

. .
 .

C1

C2

Cm

B

. .
 .

. .
 .

x1,1

x3,1

x⏨2,1

This forces each rung to use one and one . Now incidentally, is not something the R G 𝜒 B = B()

reduction is able to define---it is not part of . But any good coloring remains good under any of the 6 G
permutations of the colors, so it is "wlog." that we presume . This leaves and for the 𝜒 B = B() R G
rung nodes. It is natural to have stand for the literals that are made true, for false, but this is where G R
we have to be careful. The permutation that swaps and while keeping fixed stays good, but if R G B
flipping an assignment like to satisfies one way but not the other, there could be a a 1010 0101 𝜙
mismatch on correctness requirements.

Let us go ahead. The next question is, can we re-use the clauses-as-triangles idea? With the same
crossing edges? Let's try it for the same example formula:

𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (1 x⏨2 3) (1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

Here's the deal: If we have a 3-coloring , it has to use once in each clause triangle and once in 𝜒 G
each rung. If is green in clause then its crossing edge goes to in rung . This had to be red, xij Cj x⏨i i

so in the rung is green. This means was set true, so is satisfied. The reasoning for a negative xi xi Cj

literal being green in is symmetrical: the crossing edge goes to in the rung, which must be red, x⏨ij Cj xi
so is set false, so satisfies . Therefore we get the (direction that being 3-colorable xi x⏨i Cj ⟸) G

implies is satisfiable.𝜙

The direction hits a possible snag, however: Suppose is satisfiable, but only by assignments ⟹ 𝜙
that make all three literals in some clause true. It's not just that we can't color all three nodes in the

C1

C2

C3

x⏨3,2

x1,1

x⏨2,1

x3,1

x1,2

x2,2

x⏨1,3

x⏨3,3

x⏨4,3

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨4 x4

B

G =
Does the same
construction
work for G3C?

clause green, it's that their crossing edges go to red nodes in the rungs. Suppose this happens for
clause in our example:C1

𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (1 x⏨2 3) (1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

Now the clause is "redlocked": we can't color any of its nodes red, so we cannot color it. Note, C1

however, that when an assignment fails to satisfy a clause, the resulting "greenlock" is exactly what we
want for correctness in the direction. This is what happens to if we set , , and all true. ⟹ C3 x1 x3 x4

So we cannot fix the "redlock" issue without damaging the "greenlock" feature.

Unless, that is, we can invoke an extra condition that "redlock" never happens: that no assignment can
satisfy all three literals in a clause. This is a condition that the Cook-Levin reduction, together with the
idea of inserting an always-false variable , allow us to invoke. Then the direction goes through: z ⟹

In every , take one node that is satisfied and the other not satisfied. The crossing edges make it Cj

good to color the former green and the latter red. The blue color can then be used for the third node B
in the clause. We can rigorize this by stating a variant of 3SAT:

NAE-3SAT
Instance: A Boolean formula in 3CNF.𝜙 x , … , x = C ∧ C ∧ ⋯ ∧ C(1 n) 1 2 m

Question: Is there an assignment such that in every clause, one or two of = a a ⋯ a ∈ 0, 1a 1 2 n { }n

its three literals are made true? (I.e., the values of its literals are not all equal.)

C1

C2

C3

x⏨3,2

x1,1

x⏨2,1

x3,1

x1,2

x2,2

x⏨1,3

x⏨3,3

x⏨4,3

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨4 x4

B

G =
Does the same
construction
work for G3C?

Thus if is "Not All Equal"-satisfiable then is 3-colorable. And the original (direction also 𝜙 G ⟸)

works this way: the red node in the clause cannot be satisfied. Thus we actually get NAE-3SAT ≤
p
m

G3C. This is good enough to show that G3C is NP-complete. And to top it off, if is an "NAE" a
satisfying assignment, then so it its flip . So the symmetry in the coloring is a feature, not a bug.a'

[2023 Note: The fire alarm happened just before I was set to define NAE-3SAT. I wound up speaking
the definition in the courtyard. The delay caused me to skip the part that does the reduction to G3C
without using NAE-3SAT, so that I could cover Dominating Set in full. Thus what follows until then---
which is the way my proof in ALR chapter 28 does it---is FYI for you.]

If, on the other hand, we want to do the reduction strictly from 3SAT without special Cook-Levin appeal,
then we need to modify ---as the ALR chapter does. This builds on the "governing blue node" idea to G
enforce an asymmetry between red and green as well. Of course, by just happening to choose 3SAT as

the "language " in the Cook-Levin proof, we get 3SAT NAE-3SAT, so 3SAT G3C A ∈ NP ≤
p
m ≤

p
m

follows by transitivity. But it is useful to illustrate 3SAT G3C directly. ≤
p
m

The first thing we need is to add to the node a second node so that the colors used for those B G
nodes wlog. count as "blue" and "green". Connections from the node to the clause gadgets can fix G
the problem of symmetry betweed "red" and "green", which we need to do for reduction from 3SAT
though not from NAE-3SAT.

The second change is to include an outer layer of 3 nodes in the clause gadgets. The nodes will get an
automatic "greenlock" from the node. If they get a "redlock" from the rungs---which we want to mean G
all three literals being made false---then the 3 nodes are forced to be blue. This is without connecting
the outer 3 nodes to each other. The resulting "bluelock", however, will prevent an inner triangle of

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨n xn

. .
 .

. .
 .

C1

C2

Cm

B

. .
 .

. .
 .

G

each clause from being 3-colored. If, however, all three literals in the clause are made true, then the
outer layer will see "greenlock" twice, and that is no problem. Here is the idea abstractly, showing only
crossing edges between the rungs and the first clause :x ∨ ∨ x(1 x⏨2 3)

(Note: These are the opposite connections from the ALR notes, where I made the opposite choice of
connecting in a clause to in the rung to stay consistent with the reduction to IND. SET.)x1 x⏨1

If and are made false and true, so that clause fails, then each of the outer nodes of the x1 x3 x2 C1 C1

gadget "sees red" as well as green from node . This forces each outer node to be blue, but then the G
inner triangle of the gadget cannot be 3-colored. Any other assignment, however, allows using two C1

different colors for the outer nodes, and then the inner triangle can always be 3-colored:

Here is the whole reduction carried out for our example formula
𝜙 = x ∨ ∨ x ∧ x ∨ x ∨ ∧ ∨ ∨ (1 x⏨2 3) (1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨n xn

. .
 .

. .
 .

C1

C2

Cm

B

. .
 .

. .
 .

G

x1

x3

x⏨2

x1

x3

x⏨2

x1

This combination is not possible owing to the node,G
but maybe still worth noting.

Again the reduction is linear-time computable in one sweep through . Correctness still needs to be re-𝜙

checked in the other direction: If has a good 3-coloring, then for every clause , at least one of its 3 G Cj

outer nodes or must be colored . Since we are now sending crossing edges to the rung node x ij x⏨ij R

with the same sign, this means the same-sign rung node must be colored . In turn, this means the G
literal satisfies . Thus any good coloring uniquely yields an assignment that satisfies all clauses. Cj ☒

[---------------End of segment that is FYI for 2023----------------]

Now we will consider a different reduction where both the "rungs" and the "clause gadgets" get different
treatment. The target problem is:

Dominating Set (Dom Set)
Instance: An undirected graph and an integer G = V, E() k ≥ 1.

Question: Is there , , such that every node not in is adjacent to a node in ?S ⊆ V |S| ≤ k S S

The difference between a dominating set and a vertex cover is that the nodes don't have to cover every
edge. The bowtie graph has a dominating set of size just 1, while its line graph needs but can k = 2

do so even by taking the two non-central nodes:

(Does the line-graph function give a reduction from Edge Cover to Dom Set or vice-versa? Hmmm...
But we still want to reduce 3SAT to Dom Set directly.)

x⏨1 x1

x⏨2 x2

x⏨3 x3

x⏨4 x4

C1

C2

C3

B G

x1,1

x3,1

x⏨2,1

x1,2

x2,2

x⏨3,2

x⏨1,3

x⏨3,3
x⏨4,3

x⏨4

G = f 𝜙 :()

G G'

The first key idea is the same: the rung nodes chosen in correspond to those literals set true. The S
second key idea is simple: make that true literal dominate every clause it satisfies. This needs only one
node per clause, and suggests taking , irrespective of the number of clauses. Here is how k = n m
that looks for a simpler formula, :𝜓 = x ∨ ∨ x ∧ ∨ x ∨ (1 x⏨2 3) (x⏨1 2 x⏨3)

Setting all three variables false dominates the two clause nodes. So would setting them all true,
whereas moving just to be true would fail to dominate (or satisfy) . Is this all we need? x2 C1

The flaw is that we have not enforced that in each rung, either or must be in . This case allows xi x⏨i S

a "surprise" domination by two nodes outside the rungs: use and . To enforce the C1 C2

correspondence between possibly-good choices of and truth assignments, and make sure is S k = n
the minimum possible, we use a third node in each "rung":

Those extra nodes can only be dominated from the rung, and they do not help dominate each other, so
 separate nodes are needed to dominate them. This fixes the problem. Defining the reduction n

formally in general and proving it correct is a self-study exercise.

x⏨1 x1

x⏨2 x2

x⏨3 x3

C1

C2

x⏨1 x1

x⏨2 x2

x⏨3 x3

C1

C2
u2

