
CSE491/596 Lecture Wed. 11/4: NP Completeness By Component Design III
 
Now we consider the Graph 3-Coloring Problem.
 
G3C
Instance: Just an undirected graph                  (no " ").G =  V, E( ) k
Question: Is there a map  such that for all , ?𝜒 :  V  R, G, B→ { } u, v  ∈  E( ) 𝜒 u  ≠  𝜒 v( ) ( )

 
The Greek chi is for "chromo-" meaning "color".  The language of 3-colorable graphs is clearly in : NP

we just guess the coloring, which is a string in , and verify the coloring on each of R, G, B{ }n

 edges.  To show it is NP-complete, we use the same basic rungs-and-gadgets m ≤  =  O nn
2

2

layout, but with one or two twists. 
 
The first thing to think about is how to establish a correspondence between colorings and truth 
assignments to begin with, before thinking about "good" colorings (i.e., those that meet the "such that" 
property of having no monochrome edges) vis-à-vis satisfying assignments.  The natural idea is to give 
each rung an edge so that each  and  pair must be given different colors so that one color stands xi x⏨i

for true and the other for false.  Well, we have to limit that to two colors for each rung, so we do so by 
connecting all  rung nodes to a special node called  for the intent to color it blue.  So on the ladder 2n B
side, we have [2023 Note: As in the previous lecture, I did more on early diagrams rather than jump to 
as new diagram each time I made some changes.]:
 

 
𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)
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This forces each rung to use one  and one .  Now incidentally,  is not something the R G 𝜒 B  =  B( )

reduction is able to define---it is not part of .  But any good coloring remains good under any of the 6 G
permutations of the colors, so it is "wlog." that we presume .  This leaves  and  for the 𝜒 B  =  B( ) R G
rung nodes.  It is natural to have  stand for the literals that are made true,  for false, but this is where G R
we have to be careful.  The permutation that swaps  and  while keeping  fixed stays good, but if R G B
flipping an assignment  like  to  satisfies  one way but not the other, there could be a a 1010 0101 𝜙
mismatch on correctness requirements.
 
Let us go ahead.  The next question is, can we re-use the clauses-as-triangles idea?  With the same 
crossing edges?  Let's try it for the same example formula:
 

𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

 

 
Here's the deal: If we have a 3-coloring , it has to use  once in each clause triangle and once in 𝜒 G
each rung.  If  is green in clause  then its crossing edge goes to  in rung .  This had to be red, xij Cj x⏨i i

so  in the rung is green.  This means  was set true, so  is satisfied.  The reasoning for a negative xi xi Cj

literal  being green in  is symmetrical: the crossing edge goes to  in the rung, which must be red, x⏨ij Cj xi
so  is set false, so  satisfies .  Therefore we get the (  direction that  being 3-colorable xi x⏨i Cj ⟸ ) G

implies  is satisfiable.𝜙
 
The direction hits a possible snag, however: Suppose  is satisfiable, but only by assignments ⟹ 𝜙
that make all three literals in some clause true.  It's not just that we can't color all three nodes in the 
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clause green, it's that their crossing edges go to red nodes in the rungs.  Suppose this happens for 
clause  in our example:C1

 
𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

 

 
Now the clause  is "redlocked": we can't color any of its nodes red, so we cannot color it.  Note, C1

however, that when an assignment fails to satisfy a clause, the resulting "greenlock" is exactly what we 
want for correctness in the direction.  This is what happens to  if we set , , and  all true.  ⟹ C3 x1 x3 x4

So we cannot fix the "redlock" issue without damaging the "greenlock" feature.
 
Unless, that is, we can invoke an extra condition that "redlock" never happens: that no assignment can 
satisfy all three literals in a clause.  This is a condition that the Cook-Levin reduction, together with the 
idea of inserting an always-false variable , allow us to invoke.  Then the direction goes through: z ⟹

In every , take one node that is satisfied and the other not satisfied.  The crossing edges make it Cj

good to color the former green and the latter red.  The blue color  can then be used for the third node B
in the clause.  We can rigorize this by stating a variant of 3SAT:
 
NAE-3SAT
Instance: A Boolean formula  in 3CNF.𝜙 x , … , x  =  C  ∧  C  ∧  ⋯  ∧  C( 1 n) 1 2 m

Question: Is there an assignment  such that in every clause, one or two of  =  a a ⋯ a  ∈  0, 1a 1 2 n { }n

its three literals are made true?  (I.e., the values of its literals are not all equal.)
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Thus if  is "Not All Equal"-satisfiable then  is 3-colorable.  And the original (  direction also 𝜙 G ⟸ )

works this way: the red node in the clause cannot be satisfied.  Thus we actually get NAE-3SAT  ≤
p
m

G3C.  This is good enough to show that G3C is NP-complete.  And to top it off, if  is an "NAE" a
satisfying assignment, then so it its flip .  So the symmetry in the coloring is a feature, not a bug.a'

 
[2023 Note: The fire alarm happened just before I was set to define NAE-3SAT. I wound up speaking 
the definition in the courtyard.  The delay caused me to skip the part that does the reduction to G3C 
without using NAE-3SAT, so that I could cover Dominating Set in full.  Thus what follows until then---
which is the way my proof in ALR chapter 28 does it---is FYI for you.]
 
If, on the other hand, we want to do the reduction strictly from 3SAT without special Cook-Levin appeal, 
then we need to modify ---as the ALR chapter does.  This builds on the "governing blue node" idea to G
enforce an asymmetry between red and green as well. Of course, by just happening to choose 3SAT as 

the "language " in the Cook-Levin proof, we get 3SAT  NAE-3SAT, so 3SAT  G3C A ∈  NP ≤
p
m ≤

p
m

follows by transitivity.  But it is useful to illustrate 3SAT  G3C directly.  ≤
p
m

 
The first thing we need is to add to the  node a second node  so that the colors used for those B G
nodes wlog. count as "blue" and "green".  Connections from the  node to the clause gadgets can fix G
the problem of symmetry betweed "red" and "green", which we need to do for reduction from 3SAT 
though not from NAE-3SAT.  
 

 
The second change is to include an outer layer of 3 nodes in the clause gadgets.  The nodes will get an 
automatic "greenlock" from the  node.  If they get a "redlock" from the rungs---which we want to mean G
all three literals being made false---then the 3 nodes are forced to be blue.  This is without connecting 
the outer 3 nodes to each other.  The resulting "bluelock", however, will prevent an inner triangle of 
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each clause from being 3-colored.  If, however, all three literals in the clause are made true, then the 
outer layer will see "greenlock" twice, and that is no problem.  Here is the idea abstractly, showing only 
crossing edges between the rungs and the first clause :x ∨ ∨ x( 1 x⏨2 3)

 

(Note: These are the opposite connections from the ALR notes, where I made the opposite choice of 
connecting  in a clause to  in the rung to stay consistent with the reduction to IND. SET.)x1 x⏨1

 
If  and  are made false and  true, so that clause  fails, then each of the outer nodes of the  x1 x3 x2 C1 C1

gadget "sees red" as well as green from node .  This forces each outer node to be blue, but then the G
inner triangle of the  gadget cannot be 3-colored.  Any other assignment, however, allows using two C1

different colors for the outer nodes, and then the inner triangle can always be 3-colored:

 
Here is the whole reduction carried out for our example formula
𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)
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Again the reduction is linear-time computable in one sweep through .  Correctness still needs to be re-𝜙

checked in the other direction: If  has a good 3-coloring, then for every clause , at least one of its 3 G Cj

outer nodes or  must be colored .  Since we are now sending crossing edges to the rung node x  ij x⏨ij R

with the same sign, this means the same-sign rung node must be colored .  In turn, this means the G
literal satisfies .  Thus any good coloring uniquely yields an assignment that satisfies all clauses.  Cj ☒

[---------------End of segment that is FYI for 2023----------------]
 
Now we will consider a different reduction where both the "rungs" and the "clause gadgets" get different 
treatment.  The target problem is:
 
Dominating Set (Dom Set)
Instance: An undirected graph  and an integer G =  V, E( ) k ≥  1.

Question: Is there , , such that every node not in  is adjacent to a node in ?S ⊆  V |S| ≤  k S S
 
The difference between a dominating set and a vertex cover is that the nodes don't have to cover every 
edge.  The bowtie graph has a dominating set of size just 1, while its line graph needs  but can k =  2

do so even by taking the two non-central nodes:

(Does the line-graph function give a reduction from Edge Cover to Dom Set or vice-versa?  Hmmm...  
But we still want to reduce 3SAT to Dom Set directly.)
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The first key idea is the same: the rung nodes chosen in  correspond to those literals set true.  The S
second key idea is simple: make that true literal dominate every clause it satisfies.  This needs only one 
node per clause, and suggests taking , irrespective of the number  of clauses.  Here is how k =  n m
that looks for a simpler formula,  :𝜓 =  x  ∨   ∨  x  ∧   ∨  x  ∨  ( 1 x⏨2 3) (x⏨1 2 x⏨3)

Setting all three variables false dominates the two clause nodes.  So would setting them all true, 
whereas moving just  to be true would fail to dominate (or satisfy) .  Is this all we need?  x2 C1

 
The flaw is that we have not enforced that in each rung, either  or  must be in .  This case allows xi x⏨i S

a "surprise" domination by two nodes outside the rungs: use  and .  To enforce the C1 C2

correspondence between possibly-good choices of  and truth assignments, and make sure  is S k =  n
the minimum possible, we use a third node in each "rung":

Those extra nodes can only be dominated from the rung, and they do not help dominate each other, so 
 separate nodes are needed to dominate them.  This fixes the problem.  Defining the reduction n

formally in general and proving it correct is a self-study exercise.  
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