
CSE491/596 Lecture Mon. Oct. 26: NP-CompletenessCSE491/596 Lecture Mon. Oct. 26: NP-Completeness
  
The definition of a language The definition of a language  being NP-complete is the same as before:  being NP-complete is the same as before:  and for all and for all  BB B B ∈∈   NPNP

, , .  All NP-complete decision problems are related by polynomial-time mapping.  All NP-complete decision problems are related by polynomial-time mapping  A A ∈∈   NPNP A A ≤≤  B Bpp
mm

equivalence, equivalence, .  Up at the top of .  Up at the top of   (and hence also the top of (and hence also the top of coco-- ) we will get a lot of more) we will get a lot of more  ≡≡
pp
mm NPNP NPNP

meaningful reduction equivalence thanks to completeness.  Before tackling Cook's Theorem on the meaningful reduction equivalence thanks to completeness.  Before tackling Cook's Theorem on the --NPNP

completeness of SAT, let's see some simpler examples.  Consider these decision problems:completeness of SAT, let's see some simpler examples.  Consider these decision problems:
  
CLIQUECLIQUE
InstanceInstance: An undirected graph : An undirected graph  and a number  and a number ..G G ==   VV,, EE(( )) k k ≥≥  1 1

QuestionQuestion: : Does there existDoes there exist a set  a set  of  of  (or more) nodes such that  (or more) nodes such that for eachfor each pair  pair , ,   S S ⊆⊆  V V kk uu,, v v ∈∈  S S uu,, vv(( ))

is an edge in is an edge in ??  EE
  
INDEPENDENT SETINDEPENDENT SET
InstanceInstance: An undirected graph : An undirected graph  and a number  and a number ..G G ==   VV,, EE(( )) k k ≥≥  1 1

QuestionQuestion: : Does there existDoes there exist a set  a set  of  of  (or more) nodes such that  (or more) nodes such that for eachfor each pair  pair , ,   S S ⊆⊆  V V kk uu,, v v ∈∈  S S uu,, vv(( ))

is is notnot an edge in  an edge in ??    EE
  
Important to keep straightImportant to keep straight: The languages of these problems are : The languages of these problems are notnot complements of each other, complements of each other,  
despite their differing by just the word "not" at the end.  Both languages are in despite their differing by just the word "not" at the end.  Both languages are in  with  with  as the as the  NPNP SS

witness.  An important point is that with witness.  An important point is that with , there are , there are  subsets  subsets  that might have to be that might have to be  n n ==   ||VV|| 22nn SS
considered.  A polynomial-time algorithm cannot try each one.  Within considered.  A polynomial-time algorithm cannot try each one.  Within , however, there are at most , however, there are at most   SS nn22

pairs pairs  that have to be considered.  Those can all be iterated through to check the body of the that have to be considered.  Those can all be iterated through to check the body of the  uu,, vv(( ))

condition in quadratic time, so it becomes a polynomial-time decidable predicate condition in quadratic time, so it becomes a polynomial-time decidable predicate .  It is not even.  It is not even  RR GG,, SS(( ))
true that this predicate gets negated between the two languages, because it includes the "for each"true that this predicate gets negated between the two languages, because it includes the "for each"  
part.  It is because this runs over only polynomially-many pairs that I suggest the convention of sayingpart.  It is because this runs over only polynomially-many pairs that I suggest the convention of saying  
"for each" rather than "for all" there.   What actually gets complemented "for each" rather than "for all" there.   What actually gets complemented is the graph is the graph , as expressed, as expressed  GG
by this fact:by this fact:
  

 has a clique of size  has a clique of size    the complementary graph  the complementary graph  has an independent set of size  has an independent set of size ..GG kk ⟺⟺ GG⏨⏨ kk
  

Therefore, the simple reduction function Therefore, the simple reduction function  reduces  reduces CLIQUECLIQUE to  to IND SETIND SET and also vice- and also vice-ff GG,, kk   ==   ,, kk(( )) ((GG⏨⏨ ))

  

  

GG GG⏨⏨



versa, so the problems are versa, so the problems are  equivalent.  [Note that this skips writing the angle brackets around equivalent.  [Note that this skips writing the angle brackets around  ≡≡
pp
mm

; by now that's AOK.]  A second fact yields a second equivalence:; by now that's AOK.]  A second fact yields a second equivalence:⟨⟨GG,, kk⟩⟩
  
The complement of an independent set The complement of an independent set  in  in  is a set  is a set  of nodes such that every edge involves a of nodes such that every edge involves a  SS GG S'S'

node in node in .  Such an .  Such an  is called (somewhat misleadingly, IMHO) a  is called (somewhat misleadingly, IMHO) a vertex coververtex cover.  Therefore:.  Therefore:S'S' S'S'
  

 has an independent set of size (at least)   has an independent set of size (at least)       has a vertex cover of size (at most)  has a vertex cover of size (at most) ..GG kk ⟺⟺ GG nn-- kk
  
Note that the graph Note that the graph  stays the same; instead we flip around the target number from  stays the same; instead we flip around the target number from  nodes to  nodes to   GG kk ||VV|| -- kk
nodes.  In practice, when we're trying to optimize, we want to nodes.  In practice, when we're trying to optimize, we want to maximizemaximize cliques and independent sets cliques and independent sets  
and and minimizeminimize vertex covers.  The latter gives rise to this decision problem: vertex covers.  The latter gives rise to this decision problem:
  
VERTEX COVER VERTEX COVER ((VCVC))
Instance: A graph Instance: A graph  and a number  and a number ..GG ℓ ℓ ≥≥  1 1

Question: Does Question: Does  have a vertex cover of size (at most)  have a vertex cover of size (at most) ??GG ℓℓ

  
Then Then IND SETIND SET and  and VCVC reduce to each other via the reduction  reduce to each other via the reduction  (where it is (where it is  gg GG,, kk   ==   GG,, nn -- kk(( )) (( ))

understood that understood that  and  and .).)G G ==   VV,, EE(( )) n n ==   ||VV||
  
  
Next, we observe that Next, we observe that  has a complete set akin to  has a complete set akin to  but with an extra third component dedicated but with an extra third component dedicated  NPNP AATMTM

to balancing out the time complexity:to balancing out the time complexity:
  

..KK   ==   ⟨⟨NN,, xx,, @@ ⟩⟩ ::  the 2 the 2 worktape NTM N accepts x within t stepsworktape NTM N accepts x within t stepsNPNP
tt --

  
The reason this is in The reason this is in  involves an important picture.  We draw a 5-tape universal NTM  involves an important picture.  We draw a 5-tape universal NTM  as as  NPNP NNUU

follows.  After follows.  After  "unpacks" the three components of its input  "unpacks" the three components of its input  onto its own tapes, the onto its own tapes, the  NNUU z z ==   ⟨⟨NN,, xx,, @@ ⟩⟩tt

computation starts up looking like this:computation starts up looking like this:
  

  

  

NN ::UU

tt

xx

NNcode ofcode of!! ss,, cc cc //dd dd ,,DD DD ,, qq ;; ss......(( 11 22 11 22 11 22 )) (( ...... ;; qq ,, ____ // 1_1_,,SSSS,, qq)) (( cc accacc))

ccNN

The two worktapes of The two worktapes of NN

Binary counterBinary counter decremented at each step (of decremented at each step (of ););NN
computation stops when clock "rings." computation stops when clock "rings." 



  
The key point (which will matter more when we hit the Time Hierarchy Theorem) is that for The key point (which will matter more when we hit the Time Hierarchy Theorem) is that for  to to  NNUU

execute the next step of execute the next step of  may require going thru its entire code of length  may require going thru its entire code of length  just to find the next just to find the next  NN ccNN
applicable instruction.  This is true all the more when the choice of the next instruction to execute isapplicable instruction.  This is true all the more when the choice of the next instruction to execute is  
nondeterministic.  Thus nondeterministic.  Thus  does  does  steps of  steps of  in up to  in up to  steps of its own.  In terms of the input  steps of its own.  In terms of the input   NNUU tt NN xx(( )) cc  t tNN xx

to to , ,  is a constant, but in terms of the input  is a constant, but in terms of the input , which has length order-of, which has length order-of  NN ccNN z z ==   ⟨⟨NN,, xx,, @@ ⟩⟩tt

, the time , the time  is quadratic in  is quadratic in .  But that is completely fine: it puts .  But that is completely fine: it puts  into into  cc   ++  n  n ++  t tNN cc  t tNN r r ==   ||zz|| KKNPNP

 which is within  which is within ..    NTIMENTIME OO rr22
NPNP

  
We have given We have given  five tapes, one input tape and four worktapes, which may seem unfair.  But we can five tapes, one input tape and four worktapes, which may seem unfair.  But we can  NNUU

invoke a general theorem, whose first part has been mentioned (but not proved) before.  Its secondinvoke a general theorem, whose first part has been mentioned (but not proved) before.  Its second  
part is complicated---both Debray and the ALR notes skip it (in our case, because it was included inpart is complicated---both Debray and the ALR notes skip it (in our case, because it was included in  
someone else's chapter) and we will skip the proof here as well.someone else's chapter) and we will skip the proof here as well.
  
Theorem. Theorem.  For any multi-tape DTM (respectively, NTM)  For any multi-tape DTM (respectively, NTM)  that runs in time  that runs in time  and space  and space , we, we  MM tt nn(( )) ss nn(( ))
can build:can build:

1. 1. a one-tape DTM (respectively, NTM) a one-tape DTM (respectively, NTM)  that simulates  that simulates  in time  in time  and space  and space ;;MM11 MM OO tt nn(( ))22 ss nn(( ))

2. 2. a two-worktape DTM (respectively, NTM) a two-worktape DTM (respectively, NTM)  that simulates  that simulates  in time  in time  and and  MM22 MM OO tt nn tt nn(( (( ))loglog (( ))))

space space ..ss nn(( ))

Moreover, both Moreover, both  and  and  have the property that the location of their tape head(s) at any timestep  have the property that the location of their tape head(s) at any timestep  is is  MM11 MM22 tt
a function of the length a function of the length  of the input  of the input  alone, not of the content of  alone, not of the content of  (this property is called (this property is called  nn xx xx
"obliviousness").  "obliviousness").  ☒☒
  
What this means for any language What this means for any language  is that if we have a multi is that if we have a multi-tape TM -tape TM  accepting  accepting  in in  A A ∈∈   PP MM AA

polynomial time polynomial time , then we can get a 2-worktape TM , then we can get a 2-worktape TM  that accepts  that accepts  in time in time  tt nn   ==  O O nn(( )) kk MM22 AA

.  Likewise, given .  Likewise, given  we may always take a 2-tape we may always take a 2-tape  OO tt nn tt nn   ==  O O nn nn   ==   nn(( (( ))loglog (( )))) kk loglog OO kk A A ∈∈   NPNP

NTM NTM  to accept  to accept  in polynomial time; if  in polynomial time; if  is in  is in  then  then  runs in time  runs in time  time time  NN22 AA AA NTIMENTIME OO nnkk NN22 nnOO kk

(which we can bump up to time (which we can bump up to time  if we don't like the tilde).  We could even use a 1-tape NTM if we don't like the tilde).  We could even use a 1-tape NTM  OO nnk+1k+1

 if we didn't care about doubling the exponent to time  if we didn't care about doubling the exponent to time .  Now finally we can see why our.  Now finally we can see why our  NN11 OO nn2k2k

language language  is  is -hard as well as belonging to -hard as well as belonging to ..KKNPNP NPNP NPNP

  
TheoremTheorem.  .   is NP-complete. is NP-complete.KKNPNP

  
ProofProof.  We have shown that .  We have shown that  is in  is in .  Now let any langauge .  Now let any langauge  be given.  Then we can be given.  Then we can  KKNPNP NPNP A A ∈∈   NPNP

take a 2-worktape NTM take a 2-worktape NTM  that accepts  that accepts  in  in  time for some constant  time for some constant  and exponent  and exponent .  For any.  For any  NNAA AA cncnkk cc kk

string string  in  in  define definexx 𝛴𝛴**

  
  where    where  ..ff xx   ==   ⟨⟨NN ,, xx,, @@ ⟩⟩(( )) AA

rr r r ==  c c||xx||kk

  

  

  



Then the function Then the function  is computable in deterministic time  is computable in deterministic time , most of which is spent writing down all, most of which is spent writing down all  ff OO nnkk

the the  signs.  Clearly  signs.  Clearly  accepts  accepts  within  within  steps  steps , so , so  mapping- mapping-@@ x x ∈∈  A  A ⟺⟺  N NAA xx rr ⟺⟺  f f xx   ∈∈  K K(( )) NPNP ff
reduces reduces  to  to  in polynomial time. in polynomial time.AA KKNPNP

  
  
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
ScholiumScholium ( (meaning, more important than a footnote in relation to course themes): meaning, more important than a footnote in relation to course themes): The reduction of anThe reduction of an  
arbitrary c.e. language arbitrary c.e. language  to  to  was  was .  This qualifies as a regular reduction.  This qualifies as a regular reduction  AA APAPTMTM ff xx   ==   ⟨⟨MM ,, xx⟩⟩(( )) AA

because the "because the " " part is just a fixed string that can be output in arcs from the start state of a finite-" part is just a fixed string that can be output in arcs from the start state of a finite-⟨⟨MM ,,AA

state transducer state transducer , and the final ", and the final " " (or whatever concrete tuple-forming chars are used in its place) can" (or whatever concrete tuple-forming chars are used in its place) can  TT ⟩⟩

be output using the final-state be output using the final-state  function feature of the definition of an FST given on the function feature of the definition of an FST given on the  𝜙𝜙 qq(( ))

presentation-options section of HW4.  The reduction presentation-options section of HW4.  The reduction  that we originally used from  that we originally used from  to to  ff xx   ==   ⟨⟨xx,, xx⟩⟩(( )) KKTMTM

 is not regular, because of how it doubles  is not regular, because of how it doubles  side-by-side.  But we can instead take a fixed DTM side-by-side.  But we can instead take a fixed DTM  AATMTM xx
 accepting the  accepting the  language and use  language and use  in place of  in place of  above, getting a regular reduction from above, getting a regular reduction from  MMKK KKTMTM MMKK MMAA

 to  to  after all.  In the reduction  after all.  In the reduction  between  between CLIQUECLIQUE and  and IND SETIND SET, if we, if we  KKTMTM AATMTM ff GG,, kk   ==   ,, kk(( )) ((GG⏨⏨ ))

represent the graph as a bitstring ofrepresent the graph as a bitstring of   edges and non-edges, then we need only complement this edges and non-edges, then we need only complement this  nn
22

bitstring, which an FST can do.  In the reduction bitstring, which an FST can do.  In the reduction  from  from IND SETIND SET to  to VCVC, we could, we could  gg GG,, kk   ==   GG,, nn -- kk(( )) (( ))
argue the subtraction as doable by a multi-tape FST as in (D) from the first set of presentation optionsargue the subtraction as doable by a multi-tape FST as in (D) from the first set of presentation options  
on HW2.  We could also argue that by adding extra unused nodes we can make on HW2.  We could also argue that by adding extra unused nodes we can make  a power of 2 minus a power of 2 minus  nn
1 in the problem statement.  Then 1 in the problem statement.  Then  becomes the same as complementing the binary expansion of becomes the same as complementing the binary expansion of  nn -- kk
 (aside from its leading 1), and that is regular without needing extra tapes. (aside from its leading 1), and that is regular without needing extra tapes.kk

  
The above reduction to The above reduction to is not regular, however, for a firmer reason: because the final string is not regular, however, for a firmer reason: because the final string   KK   NPNP @@rr

requires counting up to the length of requires counting up to the length of .  For this and similar reasons, the study of ``.  For this and similar reasons, the study of ``micro-reductionsmicro-reductions''''  xx
has gone in two other directions:has gone in two other directions:

• • The logical notion of "projection" focuses on how The logical notion of "projection" focuses on how  gets embedded one or more times into  gets embedded one or more times into ,,  xx ff xx(( ))

so that going in the reverse direction, so that going in the reverse direction,  can be "projected out of"  can be "projected out of" ..xx ff xx(( ))

• • Allow Allow  overhead to count with and do arithmetic on  overhead to count with and do arithmetic on -sized binary numbers.-sized binary numbers.    OO nn((loglog )) OO nn((loglog ))

Note that for any fixed Note that for any fixed , you can count up to , you can count up to  in binary using numbers of size in binary using numbers of size  kk r r ==  cn cnkk

.  This is in keeping with allowing .  This is in keeping with allowing  bandwidth to bandwidth to  c c ++  k k n n ==  O O nnloglog loglog ((loglog )) OO  n n((loglog ))

"streaming algorithms"; before streaming algorithms came along we talked about "streaming algorithms"; before streaming algorithms came along we talked about  time time  OO nn((loglog ))
for operations with random access---which is what "DLOGTIME" refers to in the ALR notes, for operations with random access---which is what "DLOGTIME" refers to in the ALR notes, butbut  
you can skim/skip that aspectyou can skim/skip that aspect..    

  
And you can skim/skip this whole note, but it might feed into a later presentation option.And you can skim/skip this whole note, but it might feed into a later presentation option.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  
Thus the presence of complete languages in Thus the presence of complete languages in  should not be a surprise, based on our experience should not be a surprise, based on our experience  NPNP

with with RERE.  The impact of the Cook-Levin Theorem---and the subsequent extension of completeness to.  The impact of the Cook-Levin Theorem---and the subsequent extension of completeness to  
CLIQUECLIQUE and  and IND SET IND SET and and VCVC and numerous other problems that had already been studied individually and numerous other problems that had already been studied individually  

  

  



for decades---is that completeness holds for for decades---is that completeness holds for naturalnatural problems in  problems in .  Indeed, we will see that all but a.  Indeed, we will see that all but a  NPNP

handful of the thousands of problems in handful of the thousands of problems in  have been classified either as in  have been classified either as in  or as  or as -complete.-complete.    NPNP PP NPNP

((FACTFACT is one of the few that stull have "intermediate" status.) is one of the few that stull have "intermediate" status.)
  
Before we state and prove the theorem, let us see one more application of the idea of tracing aBefore we state and prove the theorem, let us see one more application of the idea of tracing a  
sequence of IDs sequence of IDs  that represent a valid  that represent a valid -step computation by a TM -step computation by a TM , in this, in this  II xx ,,  I I ,,  I I ,,   …… ,,  I I00(( )) 11 22 tt tt MM
case a DTM.  Whereas the Kleene case a DTM.  Whereas the Kleene -predicate pictures them side-by-side, now we will stack them up-predicate pictures them side-by-side, now we will stack them up  TT
into into  columns in a grid.  For visual convenience we will suppose  columns in a grid.  For visual convenience we will suppose  is a 1-tape TM whose tape has is a 1-tape TM whose tape has  tt ++ 11 MM
a left end and is infinite only to the right, but this is not essential and we could add another grid toa left end and is infinite only to the right, but this is not essential and we could add another grid to  
handle a second tape, with wires between the grids as well as within them.  But for polynomial time, thehandle a second tape, with wires between the grids as well as within them.  But for polynomial time, the  
simple one-plane grid is enough.  Initially it has simple one-plane grid is enough.  Initially it has  columns to hold the  columns to hold the  left-endmarker and the left-endmarker and the  nn ++ 11 ∧∧

input input .  Over .  Over  steps,  steps,  cannot possibly visit more than  cannot possibly visit more than  more cells, so we can lay the whole thing out more cells, so we can lay the whole thing out  xx tt MM tt
on a on a  grid with  grid with ..    tt ++ 11   ××  s s(( )) s s ≤≤  t t ++ 11
  

  
Every cell contains either a character in the work alphabet Every cell contains either a character in the work alphabet  of  of  or a pair in  or a pair in  of a state and a of a state and a  𝛤𝛤 MM Q Q ××  𝛤 𝛤
char.  We can use a binary encoding (a-la ASCII) of both.  Then we can program a fixed finite functionchar.  We can use a binary encoding (a-la ASCII) of both.  Then we can program a fixed finite function  
in Boolean logic, depending only on the instructions in Boolean logic, depending only on the instructions  of  of , that determines the contents of a cell in, that determines the contents of a cell in  𝛿𝛿 MM
any row any row  depending only on the contents of it and its neighbor cell(s) in row  depending only on the contents of it and its neighbor cell(s) in row  for the previous for the previous  i i ≥≥  1 1 ii -- 11

timestep.   The top row is initialized to timestep.   The top row is initialized to  plus blanks to fill out the remaining columns up to  plus blanks to fill out the remaining columns up to ..    II xx00(( )) tt
  
Because NAND is a universal gate, we can program the entire grid into a Boolean circuit Because NAND is a universal gate, we can program the entire grid into a Boolean circuit  entirely of entirely of  CCxx

NAND gates, with an output wire NAND gates, with an output wire  at the bottom giving the final results, 1 or 0.  Because the formula at the bottom giving the final results, 1 or 0.  Because the formula  ww00

for for over every cell is the same, the circuit over every cell is the same, the circuit  has such a regular structure (pun quasi-intended) that it has such a regular structure (pun quasi-intended) that it  𝛿 𝛿 CCxx

is easily computed in is easily computed in  time given  time given .  .  [Added afterward][Added afterward] The " The " " is used only once and the values" is used only once and the values  OO tt22 xx xx

of its bits do not affect the layout, so we can give it via of its bits do not affect the layout, so we can give it via   input gatesinput gates to what is otherwise a circuit  to what is otherwise a circuit   nn CCnn

that depends only on the length that depends only on the length  of  of .  We could suppose .  We could suppose  so  so  is already in binary, but we is already in binary, but we  nn xx 𝛴 𝛴 ==   00,, 11{{ }} xx
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could also regard the Boolean encoding of could also regard the Boolean encoding of  that the circuit is already using as implicit at that the circuit is already using as implicit at  𝛤 𝛤 ∪∪   Q Q ××  𝛤 𝛤(( ))

the inputs, so there are really the inputs, so there are really  binary input gates.  The theorem we have proved has its own binary input gates.  The theorem we have proved has its own  n' n' ==  O O nn(( ))
significance:significance:
  
TheoremTheorem (often attributed to John E. Savage): For any language  (often attributed to John E. Savage): For any language  in  in  and all  and all  we can compute in we can compute in  AA PP nn

 time a circuit  time a circuit  of NAND gates such that for all  of NAND gates such that for all , , . . nnOO 11(( )) CCnn x x ∈∈ 𝛴𝛴nn x x ∈∈  A  A ⟺⟺  C C xx   ==  1 1nn(( )) ☒☒
  
The meaning of this theorem is that "software can be burned into hardware."  The fact thatThe meaning of this theorem is that "software can be burned into hardware."  The fact that  

 is polynomial-time computable goes into saying that the sequence  is polynomial-time computable goes into saying that the sequence  of circuits of circuits  ff xx   ==   ⟨⟨CC ,, xx⟩⟩(( )) nn CC[[ nn]]∞∞n=1n=1

is is P-uniformP-uniform.  The only reason .  The only reason  is not a "regular reduction" just like the reduction to  is not a "regular reduction" just like the reduction to  is that  is that   ff AATMTM CCnn

needs counting up to needs counting up to  and more, and FSTs like DFAs cannot do unbounded counting.  But it is and more, and FSTs like DFAs cannot do unbounded counting.  But it is  n n ==   ||xx||
close-to-regular in other senses of the above close-to-regular in other senses of the above "Scholium""Scholium" that in fact we get the stronger notion of being that in fact we get the stronger notion of being  
DLOGTIME-uniformDLOGTIME-uniform..    
  
Similar diagram from the ALR notes, ch. 27, section 3, showing how each cell depends on its 3Similar diagram from the ALR notes, ch. 27, section 3, showing how each cell depends on its 3  
neighbors in the previous row:neighbors in the previous row:    

  
To come on Wednesday: the proof of Theorem 3.1 in ALR ch. 28, now called the Cook-Levin Theorem.To come on Wednesday: the proof of Theorem 3.1 in ALR ch. 28, now called the Cook-Levin Theorem.

  

  


