
CSE491/596 Lecture Thu. 10/27/22: Cook-Levin Theorem
 
Before we state and prove the theorem, let us see one more application of the idea of tracing a 
sequence of IDs  that represent a valid -step computation by a TM , in this I x ,  I ,  I ,  … ,  I0( ) 1 2 t t M
case a DTM.  Whereas the Kleene -predicate pictures them side-by-side, now we will stack them up T
into  columns in a grid.  For visual convenience we will suppose  is a 1-tape TM whose tape has t + 1 M
a left end and is infinite only to the right, but this is not essential and we could add another grid to 
handle a second tape, with wires between the grids as well as within them.  But for polynomial time, the 
simple one-plane grid is enough.  Initially it has  columns to hold the  left-endmarker and the n + 1 ∧

input .  Over  steps,  cannot possibly visit more than  more cells, so we can lay the whole thing out x t M t
on a  grid with .  t + 1  ×  s( ) s ≤  t + 1

 

 
Every cell contains either a character in the work alphabet  of  or a pair in  of a state and a 𝛤 M Q ×  𝛤
char.  We can use a binary encoding (a-la ASCII) of both.  Then we can program a fixed finite function 
in Boolean logic, depending only on the instructions  of , that determines the contents of a cell in 𝛿 M
any row  depending only on the contents of it and its neighbor cell(s) in row  for the previous i ≥  1 i - 1

timestep.   The top row is initialized to  plus blanks to fill out the remaining columns up to .  I x0( ) t
 
Because NAND is a universal gate, we can program the entire grid into a Boolean circuit  entirely of Cx

NAND gates, with an output wire  at the bottom giving the final results, 1 or 0.  Because the formula w0

for over every cell is the same, the circuit  has such a regular structure (pun quasi-intended) that it 𝛿 Cx

is easily computed in  time given .  [Added afterward] The " " is used only once and the values O t2 x x

of its bits do not affect the layout, so we can give it via  input gates to what is otherwise a circuit  n Cn

that depends only on the length  of .  We could suppose  so  is already in binary, but we n x 𝛴 =  0, 1{ } x
could also regard the Boolean encoding of  that the circuit is already using as implicit at 𝛤 ∪  Q ×  𝛤( )

the inputs, so there are really  binary input gates.  The theorem we have proved has its own n' =  O n( )

significance:
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Theorem (often attributed to John E. Savage): For any language  in  and all  we can compute in A P n

 time a circuit  of NAND gates such that for all , . nO 1( ) Cn x ∈ 𝛴n x ∈  A ⟺  C x  =  1n( ) ☒
 
The meaning of this theorem is that "software can be burned into hardware."  The fact that 

 is polynomial-time computable goes into saying that the sequence  of circuits f x  =  ⟨C , x⟩( ) n C[ n]∞n=1

is P-uniform.  The only reason  is not a "regular reduction" just like the reduction to  is that  f ATM Cn

needs counting up to  and more, and FSTs like DFAs cannot do unbounded counting.  But it is n =  |x|

close-to-regular in other senses of the above "Scholium" that in fact we get the stronger notion of being 
DLOGTIME-uniform.  
 
Similar diagram from the ALR notes, ch. 27, section 3, showing how each cell depends on its 3 
neighbors in the previous row:  

 
 
 
 
 
The Cook-Levin Reduction Function and Proof
 
The reduction goes not only to SAT but to a highly restricted subcase of SAT:

 

 



 
Definition. A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses

,𝜙 =  C  ∧  C  ∧  ⋯  ∧  C1 2 m

 
where each clause  is a disjunction of literals  or .  The formula is in -CNF if each clause has at Cj xi x⏨i k

most  distinct literals, strictly so if each has exactly .  k k
 
3SAT
Instance: A Boolean formula  in 3CNF.𝜙 x , … , x  =  C  ∧  C  ∧  ⋯  ∧  C( 1 n) 1 2 m

Question: Is there an assignment  such that ? =  a a ⋯ a  ∈  0, 1a 1 2 n { }n 𝜙 a , … , a  =  1( 1 n)

 
Theorem [Cook 1971, Levin 1971--73]: 3SAT is NP-complete under , where the reduction function ≤ p

m

also yields an efficient 1-to-1 correspondence between satisfying assignments and witnesses for the 
source problem.
 
Historical notes: Cook only stated an oracle reduction but his proof implicitly gave a mapping 

reduction, and the followup paper by Richard Karp in 1972 made  the norm.  The added statement ≤
p
m

about mapping the witnesses too comes from Levin and is one reason people accept that he came up 
with the theorem independently while working in the Soviet Union even though his paper appeared two 

years later.  Of course 3SAT  SAT by restriction, and Cook actually showed SAT  3SAT in ≤
p
m ≤

p
m

general.  The following proof is by Claus-Peter Schnorr from 1978.
 
 
Proof.  We have already seen that SAT is in  and verifying 3SAT is even easier---see notes below.  NP

Now let any  be given.  This time we use the "verifier" characterization of .  We can take a A ∈  NP NP

deterministic TM  and polynomials  such that for all  and  of length ,VR p, q n x n
 

x ∈  A ⟺  ∃y :  |y| =  q n V  accepts ⟨x, y⟩( ( ))[ R ]

 
and such that  runs in time  where .  Earlier we stated " as the bound VR p r( ) r =  n +  q n( ) "|y| ≤  q n( )

on witnesses, but now we are entitled to "play a trump card" by saying that the encoding scheme used 
to define  first puts things entirely in binary notation with the  parts padded out to the exact ⟨x, y⟩ y
length .  Since whatever alphabet  was originally defined over can be binary-encoded with only a q n( ) A
constant-factor expansion of length, we can regard the length  as meaning after the encoding is n
applied.  Since the reduction function  we are building is given , its length  is a known quantity, so f x n
we can finally specify  as just being the concatenation  of the binary strings.  Then  ⟨x, y⟩ xy |⟨x, y⟩|
really does equal .  (We abbreviate  as just .)n +  q n( ) q n( ) q
 
Now we apply Savage's theorem to .  For each , we get a circuit  with  input gates, the VR n Cn n +  q
first  for the bits  of (the binary encoding of) , and the others for , such that n x , … , x1 n x y , … , y1 q

 accepts .  Since NAND is a universal gate, we may suppose every gate in C xy  =  1 ⟺  Vn( ) R ⟨x, y⟩

 

 



the body of  is NAND.  Since  runs in time , the size of  is order-of .  Cn VR p r( ) Cn p r  =  p n + q n( )2 ( ( ))2

Moreover, because  has such a regular structure, we have:Cn

 
• the function  is computable in  time, which is polynomial in , and f x  =  ⟨C ⟩0( ) |x| p n + q n( ( ))2 n
•  itself depends only on , not on the values of the bits of .Cn n =  |x| x

 
Now we build a Boolean formula  out of .  After the above window-dressing, this comes real 
quick. 

𝜙n Cn

 We first allocate variables  and  to stand for the input gates, so that the positive x , … x1 n y , … y1 q

literal  is carried by every wire out of the gate , and likewise every wire out of the gate  carries .  xi xi yj yj

Then we allocate variables  for every other wire in the circuit, where  is the output w , w , … , w0 1 s w0

wire and  is also proportional to the number of NAND gates , since every NAND s =  O p n + q( )2 g

gate has exactly two input wires.  Then every evaluation of  carries a Boolean value through each Cn

wire and so gives a legal assignment to these variables---but not every assignment to the wire variables 
is a legal evaluation of the circuit.  If it is not legal, then it must be inconsistent at some NAND gate.  
We write  to enforce that all gates work correctly.𝜙n

 
So consider any NAND gate  in the circuit, calling its input wires  and , and consider any output wire g u v

 (there will generally be more than one of those) from .  Definew g
 

.𝜙  =  u ∨  w  ∧  v ∨  w  ∧   ∨   ∨  g ( ) ( ) (u⏨ v⏨ w⏨)

 
Note this is in (non-strict) 3CNF where the literals in each clause have the same sign.  The point is that 

 is satisfied by, and only by, the assignments in  that make .  We can't have 𝜙g 0, 1{ }3 w =  u NAND v
 all be true, and if  or  is false, then  must be true.  Thus an assignment to all the variables u, v, w u v w

satisfies  if and only if it makes the gate  work correctly for the output wire .  So:𝜙g g w
 

𝜙  =  𝜙n ⋀
 

g
g

 
is a (non-strict) 3CNF formula that is satisfied by exactly those assignments that are legal evaluations 
of .  We will finally get the effect of "searching for" a witness  to the particular  by fixing the  Cn y x xi

variables to the values given by the actual bits of  and mandating that .  This is all done by x w  =  10

the "singleton clauses"  and for ,w( 0) 1 ≤ i ≤ n
 

 if the -th bit of  is , else . 𝛽  =  xi ( i) i x 1 𝛽  =  i (x⏨i)

 
Thus we finally define the reduction function  byf
 

.f x  =  𝜙  =  𝜙  ∧  w  ∧  𝛽  ∧  ⋯  ∧  𝛽( ) x n ( 0) 1 n

 
Then  is computable by one streaming pass over the circuit , and so is computable in the same f x( ) Cn

 

 



polynomial  time as .  For the mapping of the strings , we have:O p n + q n( ( ))2 Cn x

 
 the assignment x ∈  A ⟺  ∃y : |y| = q |x| C xy  =  1 ⟺  ∃y ∈ 0, 1 , w ∈ 0, 1 :( ( )) n( ) { }q { }s+1

 satisfies .  x, y, w( ) 𝜙  ∧  w  ⟺  𝜙  ∈  3SATn 0 x

 
For the witnesses, the point is that once a  is chosen, on top of  being given (and fixed by the  y x 𝛽i

clauses), the values of the rest of the wires in  are determined by evaluating all the gates beginning Cn

at the top.  Hence there is no choice in setting the wire variables  besides .  Thus the wk w  =  10

satisfying assignments are in 1-to-1 correspondence with strings  such that .  (If y V ⟨x, y⟩  =  1R( )

 then the correspondence is "none-to-none.")   x ∉  A ☒
 

 
 
Some decision problems can be shown to be NP-hard or NP-complete by reductions that are "SAT-
like."  The first example uses the idea of a "mask" being a string of 0,1, and @ for "don't care".  For 

 

 



instance, the mask string  forces the second bit to be 0, the third bit to be 1, and the s  =  @01@@0@@0

sixth bit to be 0.  A string like  "obeys" the mask, but  "violates" it in the third bit.  00101001 10011011

 
MASKS
Instance: A set of mask strings , all of the same length .s , … , s1 m n

Question: Does there exist a string  that violates each of the masks?a ∈  0, 1{ }n

 
Then we get 3SAT  MASKS via a linear-time reduction  that converts each clause  to a mask ≤ p

m f Cj

 so that strings  that violate the mask are the same as assignments that satisfy . For instance, if sj a Cj

, then we get the mask  above.  [This particular function  C  =  x  ∨   ∨  xj ( 2 x⏨3 6) s  =  @01@@0@@0 f
is invertible, so that we can readily get the clause from the mask, but it is important to keep in mind 
which direction the reduction is going in.]  
 
Clearly the language of the MASKS problem is in , so it is NP-complete.  We can also reduce NP

3TAUT (whose instances are Boolean formulas  in disjunctive normal form, called DNF, having at 𝜓

most 3 literals per term) to the complementary problem of whether all strings  obey at least one mask.  x
We can also make an NFA  that begins with -arcs to "lines"  corresponding to each term  of .  N𝜓 𝜖 ℓj Tj 𝜓

Each line has  states that work to accept the strings  that obey the corresponding mask.  Making  n x N𝜓

automatically accept all  of lengths other than  gives a reduction from 3TAUT to the  x n ALLNFA

problem, which finally explains why it is hard.  (It is in fact not only co-NP hard under  as this ≤
p
m

shows, but also NP-hard; it is in fact complete for the higher class  which we will get to next PSPACE

month.)  
 
The second example uses two kinds of "recommendations":
 

• "Positive": choose at least one of these items or these guys;
• "Balancing": don't choose all of these items or all of these guys.

 
A purely-negative recommendation would be "don't choose any of these items or guys" but that doesn't 
allow any choice, so obeying each one doesn't add any complexity to the problem.  We can get the 
effect of "don't choose any of " by making the singleton "balancing" recommendations "don't u, v, w
choose all of ", "don't choose all of ", and ""don't choose all of " anyway, since the u{ } v{ } w{ }

recommendations are conjoined together in the statement of the problem:
 
RECS
Instance: A set  of items and sets  and  of positive and balancing U P , … , P1 k B , … , B1 ℓ

recommendations, respectively.
Question: Is there a subset  of  that obeys each recommendation?S U
 

Again, the language RECS is in .  To try to show 3SAT  RECS we interpret  as the set of NP ≤
p
m U

variables (not all literals, just the positive ones) in the given 3CNF formula  and  as the subset of 𝜙 S

 

 



variables set to 1 by an assignment to .  𝜙
 

• A clause of the form  becomes the positive recommendation, "pick  or pick ."u ∨  w( ) u w
• A clause of the form  becomes the balancing recommendation, "don't pick all of  ∨   ∨  (u⏨ v⏨ w⏨)

."u, v, w
• A positive singleton  becomes "definitely pick "; a negative singleton  becomes "don't pick xi xi x⏨i

"---which as remarked above is a legal balancing recommendation.xi

 
Then an assignment satisfies each of the clauses in  if and only if its "true set"  obeys each of the 𝜙 S
recommendations, so  is satisfiable iff  is in the language of 𝜙 f 𝜙  =  ⟨U, P( ) 1 , … , Pk , B , … , B ⟩1 ℓ

RECS.  Wait---we didn't define  for clauses that have both positive and negative literals, so this f 𝜙( )

isn't a reduction from 3SAT in general.  That's right---it's a reduction from the subproblem of 3SAT that 
arises in the Cook-Levin-Schnorr reduction.  To appreciate and use this, we need to reflect on the proof 
more closely.
 
 

 

 


