
CSE491/596 Lecture Thu. 10/27/22: Cook-Levin Theorem

Before we state and prove the theorem, let us see one more application of the idea of tracing a
sequence of IDs that represent a valid -step computation by a TM , in this I x , I , I , … , I0() 1 2 t t M
case a DTM. Whereas the Kleene -predicate pictures them side-by-side, now we will stack them up T
into columns in a grid. For visual convenience we will suppose is a 1-tape TM whose tape has t + 1 M
a left end and is infinite only to the right, but this is not essential and we could add another grid to
handle a second tape, with wires between the grids as well as within them. But for polynomial time, the
simple one-plane grid is enough. Initially it has columns to hold the left-endmarker and the n + 1 ∧

input . Over steps, cannot possibly visit more than more cells, so we can lay the whole thing out x t M t
on a grid with . t + 1 × s() s ≤ t + 1

Every cell contains either a character in the work alphabet of or a pair in of a state and a 𝛤 M Q × 𝛤
char. We can use a binary encoding (a-la ASCII) of both. Then we can program a fixed finite function
in Boolean logic, depending only on the instructions of , that determines the contents of a cell in 𝛿 M
any row depending only on the contents of it and its neighbor cell(s) in row for the previous i ≥ 1 i - 1

timestep. The top row is initialized to plus blanks to fill out the remaining columns up to . I x0() t

Because NAND is a universal gate, we can program the entire grid into a Boolean circuit entirely of Cx

NAND gates, with an output wire at the bottom giving the final results, 1 or 0. Because the formula w0

for over every cell is the same, the circuit has such a regular structure (pun quasi-intended) that it 𝛿 Cx

is easily computed in time given . [Added afterward] The " " is used only once and the values O t2 x x

of its bits do not affect the layout, so we can give it via input gates to what is otherwise a circuit n Cn

that depends only on the length of . We could suppose so is already in binary, but we n x 𝛴 = 0, 1{ } x
could also regard the Boolean encoding of that the circuit is already using as implicit at 𝛤 ∪ Q × 𝛤()

the inputs, so there are really binary input gates. The theorem we have proved has its own n' = O n()

significance:

∧ I x0()

⋮

If

∧

∧

∧

⋮ ⋮ ⋮ ⋮ ⋮

∧

q
∧

1
or 0 for a rejecting computation

_ _ _ _ _ _s
x1

x2 x3 xn-1 xn

… … …

…
𝛿

Theorem (often attributed to John E. Savage): For any language in and all we can compute in A P n

 time a circuit of NAND gates such that for all , . nO 1() Cn x ∈ 𝛴n x ∈ A ⟺ C x = 1n() ☒

The meaning of this theorem is that "software can be burned into hardware." The fact that

 is polynomial-time computable goes into saying that the sequence of circuits f x = ⟨C , x⟩() n C[n]∞n=1

is P-uniform. The only reason is not a "regular reduction" just like the reduction to is that f ATM Cn

needs counting up to and more, and FSTs like DFAs cannot do unbounded counting. But it is n = |x|

close-to-regular in other senses of the above "Scholium" that in fact we get the stronger notion of being
DLOGTIME-uniform.

Similar diagram from the ALR notes, ch. 27, section 3, showing how each cell depends on its 3
neighbors in the previous row:

The Cook-Levin Reduction Function and Proof

The reduction goes not only to SAT but to a highly restricted subcase of SAT:

Definition. A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of clauses

,𝜙 = C ∧ C ∧ ⋯ ∧ C1 2 m

where each clause is a disjunction of literals or . The formula is in -CNF if each clause has at Cj xi x⏨i k

most distinct literals, strictly so if each has exactly . k k

3SAT
Instance: A Boolean formula in 3CNF.𝜙 x , … , x = C ∧ C ∧ ⋯ ∧ C(1 n) 1 2 m

Question: Is there an assignment such that ? = a a ⋯ a ∈ 0, 1a 1 2 n { }n 𝜙 a , … , a = 1(1 n)

Theorem [Cook 1971, Levin 1971--73]: 3SAT is NP-complete under , where the reduction function ≤ p

m

also yields an efficient 1-to-1 correspondence between satisfying assignments and witnesses for the
source problem.

Historical notes: Cook only stated an oracle reduction but his proof implicitly gave a mapping

reduction, and the followup paper by Richard Karp in 1972 made the norm. The added statement ≤
p
m

about mapping the witnesses too comes from Levin and is one reason people accept that he came up
with the theorem independently while working in the Soviet Union even though his paper appeared two

years later. Of course 3SAT SAT by restriction, and Cook actually showed SAT 3SAT in ≤
p
m ≤

p
m

general. The following proof is by Claus-Peter Schnorr from 1978.

Proof. We have already seen that SAT is in and verifying 3SAT is even easier---see notes below. NP

Now let any be given. This time we use the "verifier" characterization of . We can take a A ∈ NP NP

deterministic TM and polynomials such that for all and of length ,VR p, q n x n

x ∈ A ⟺ ∃y : |y| = q n V accepts ⟨x, y⟩(())[R]

and such that runs in time where . Earlier we stated " as the bound VR p r() r = n + q n() "|y| ≤ q n()

on witnesses, but now we are entitled to "play a trump card" by saying that the encoding scheme used
to define first puts things entirely in binary notation with the parts padded out to the exact ⟨x, y⟩ y
length . Since whatever alphabet was originally defined over can be binary-encoded with only a q n() A
constant-factor expansion of length, we can regard the length as meaning after the encoding is n
applied. Since the reduction function we are building is given , its length is a known quantity, so f x n
we can finally specify as just being the concatenation of the binary strings. Then ⟨x, y⟩ xy |⟨x, y⟩|
really does equal . (We abbreviate as just .)n + q n() q n() q

Now we apply Savage's theorem to . For each , we get a circuit with input gates, the VR n Cn n + q
first for the bits of (the binary encoding of) , and the others for , such that n x , … , x1 n x y , … , y1 q

 accepts . Since NAND is a universal gate, we may suppose every gate in C xy = 1 ⟺ Vn() R ⟨x, y⟩

the body of is NAND. Since runs in time , the size of is order-of . Cn VR p r() Cn p r = p n + q n()2 (())2

Moreover, because has such a regular structure, we have:Cn

• the function is computable in time, which is polynomial in , and f x = ⟨C ⟩0() |x| p n + q n(())2 n
• itself depends only on , not on the values of the bits of .Cn n = |x| x

Now we build a Boolean formula out of . After the above window-dressing, this comes real
quick.

𝜙n Cn

 We first allocate variables and to stand for the input gates, so that the positive x , … x1 n y , … y1 q

literal is carried by every wire out of the gate , and likewise every wire out of the gate carries . xi xi yj yj

Then we allocate variables for every other wire in the circuit, where is the output w , w , … , w0 1 s w0

wire and is also proportional to the number of NAND gates , since every NAND s = O p n + q()2 g

gate has exactly two input wires. Then every evaluation of carries a Boolean value through each Cn

wire and so gives a legal assignment to these variables---but not every assignment to the wire variables
is a legal evaluation of the circuit. If it is not legal, then it must be inconsistent at some NAND gate.
We write to enforce that all gates work correctly.𝜙n

So consider any NAND gate in the circuit, calling its input wires and , and consider any output wire g u v

 (there will generally be more than one of those) from . Definew g

.𝜙 = u ∨ w ∧ v ∨ w ∧ ∨ ∨ g () () (u⏨ v⏨ w⏨)

Note this is in (non-strict) 3CNF where the literals in each clause have the same sign. The point is that

 is satisfied by, and only by, the assignments in that make . We can't have 𝜙g 0, 1{ }3 w = u NAND v
 all be true, and if or is false, then must be true. Thus an assignment to all the variables u, v, w u v w

satisfies if and only if it makes the gate work correctly for the output wire . So:𝜙g g w

𝜙 = 𝜙n ⋀

g
g

is a (non-strict) 3CNF formula that is satisfied by exactly those assignments that are legal evaluations
of . We will finally get the effect of "searching for" a witness to the particular by fixing the Cn y x xi

variables to the values given by the actual bits of and mandating that . This is all done by x w = 10

the "singleton clauses" and for ,w(0) 1 ≤ i ≤ n

 if the -th bit of is , else . 𝛽 = xi (i) i x 1 𝛽 = i (x⏨i)

Thus we finally define the reduction function byf

.f x = 𝜙 = 𝜙 ∧ w ∧ 𝛽 ∧ ⋯ ∧ 𝛽() x n (0) 1 n

Then is computable by one streaming pass over the circuit , and so is computable in the same f x() Cn

polynomial time as . For the mapping of the strings , we have:O p n + q n(())2 Cn x

 the assignment x ∈ A ⟺ ∃y : |y| = q |x| C xy = 1 ⟺ ∃y ∈ 0, 1 , w ∈ 0, 1 :(()) n() { }q { }s+1

 satisfies . x, y, w() 𝜙 ∧ w ⟺ 𝜙 ∈ 3SATn 0 x

For the witnesses, the point is that once a is chosen, on top of being given (and fixed by the y x 𝛽i

clauses), the values of the rest of the wires in are determined by evaluating all the gates beginning Cn

at the top. Hence there is no choice in setting the wire variables besides . Thus the wk w = 10

satisfying assignments are in 1-to-1 correspondence with strings such that . (If y V ⟨x, y⟩ = 1R()

 then the correspondence is "none-to-none.") x ∉ A ☒

Some decision problems can be shown to be NP-hard or NP-complete by reductions that are "SAT-
like." The first example uses the idea of a "mask" being a string of 0,1, and @ for "don't care". For

instance, the mask string forces the second bit to be 0, the third bit to be 1, and the s = @01@@0@@0

sixth bit to be 0. A string like "obeys" the mask, but "violates" it in the third bit. 00101001 10011011

MASKS
Instance: A set of mask strings , all of the same length .s , … , s1 m n

Question: Does there exist a string that violates each of the masks?a ∈ 0, 1{ }n

Then we get 3SAT MASKS via a linear-time reduction that converts each clause to a mask ≤ p

m f Cj

 so that strings that violate the mask are the same as assignments that satisfy . For instance, if sj a Cj

, then we get the mask above. [This particular function C = x ∨ ∨ xj (2 x⏨3 6) s = @01@@0@@0 f
is invertible, so that we can readily get the clause from the mask, but it is important to keep in mind
which direction the reduction is going in.]

Clearly the language of the MASKS problem is in , so it is NP-complete. We can also reduce NP

3TAUT (whose instances are Boolean formulas in disjunctive normal form, called DNF, having at 𝜓

most 3 literals per term) to the complementary problem of whether all strings obey at least one mask. x
We can also make an NFA that begins with -arcs to "lines" corresponding to each term of . N𝜓 𝜖 ℓj Tj 𝜓

Each line has states that work to accept the strings that obey the corresponding mask. Making n x N𝜓

automatically accept all of lengths other than gives a reduction from 3TAUT to the x n ALLNFA

problem, which finally explains why it is hard. (It is in fact not only co-NP hard under as this ≤
p
m

shows, but also NP-hard; it is in fact complete for the higher class which we will get to next PSPACE

month.)

The second example uses two kinds of "recommendations":

• "Positive": choose at least one of these items or these guys;
• "Balancing": don't choose all of these items or all of these guys.

A purely-negative recommendation would be "don't choose any of these items or guys" but that doesn't
allow any choice, so obeying each one doesn't add any complexity to the problem. We can get the
effect of "don't choose any of " by making the singleton "balancing" recommendations "don't u, v, w
choose all of ", "don't choose all of ", and ""don't choose all of " anyway, since the u{ } v{ } w{ }

recommendations are conjoined together in the statement of the problem:

RECS
Instance: A set of items and sets and of positive and balancing U P , … , P1 k B , … , B1 ℓ

recommendations, respectively.
Question: Is there a subset of that obeys each recommendation?S U

Again, the language RECS is in . To try to show 3SAT RECS we interpret as the set of NP ≤
p
m U

variables (not all literals, just the positive ones) in the given 3CNF formula and as the subset of 𝜙 S

variables set to 1 by an assignment to . 𝜙

• A clause of the form becomes the positive recommendation, "pick or pick ."u ∨ w() u w
• A clause of the form becomes the balancing recommendation, "don't pick all of ∨ ∨ (u⏨ v⏨ w⏨)

."u, v, w
• A positive singleton becomes "definitely pick "; a negative singleton becomes "don't pick xi xi x⏨i

"---which as remarked above is a legal balancing recommendation.xi

Then an assignment satisfies each of the clauses in if and only if its "true set" obeys each of the 𝜙 S
recommendations, so is satisfiable iff is in the language of 𝜙 f 𝜙 = ⟨U, P() 1 , … , Pk , B , … , B ⟩1 ℓ

RECS. Wait---we didn't define for clauses that have both positive and negative literals, so this f 𝜙()

isn't a reduction from 3SAT in general. That's right---it's a reduction from the subproblem of 3SAT that
arises in the Cook-Levin-Schnorr reduction. To appreciate and use this, we need to reflect on the proof
more closely.

