
CSE491/596 Fri. 11/6: NP-Completeness By Component Design IV: Path Problems
 
The basic path problem is, gives a graph  and nodes , is there a path from  to  in ?  G s, t ∈  V s t G
Whether  is a directed or undirected graph, this is in  by breadth-first search.  But when we talk G P

about more than one path and put constraints on the paths, problems become NP-hard and complete.  
One natural constraint is that multiple paths avoid each other---meaning they use different vertices.
 
Disjoint Connecting Paths
Instance: An undirected graph , start nodes , and target nodes .G =  V, E( ) s , … , s1 k t , … , t1 k

Question: Are there disjoint paths  with each  going from  to ?P , … , P1 k Pi si ti
 
For path problems we use other ideas besides "rungs" and "ladders."  We need to set up zones of 
possible conflict between paths, or where paths must contend with their constraints.  In this case, the 
idea is to have two sets of start and target nodes.  One set stands for the variables, the other for the 
clauses.  Thus given , we allocate start nodes 𝜙 x , … , x  =  C  ∧  ⋯  ∧  C( 1 n) 1 m

 
S =  s , s , … , s  ∪  S , S , … ,  S{ 1 2 n } { 1 2 m }

 
and target nodes---note that :k =  n + m
 
T =  t , t , … , t  ∪  T , T , … ,  T{ 1 2 n } { 1 2 m }
 
We also need a mechanism to say a variable is true or false.  This is done by giving each variable path 
two possible "tracks"---say upper for true, lower for false---where the paths connecting the start  and si
terminal  for each variable  will run horizontally.  ti xi

 
[2023 Note: I intend to do this first as a sketch on the overhead projector.  The idea of doing it that way 
first is to emulate the formative process of strategizing these reductions---before getting all the fine 
details.  For the proof, however, I will go to the diagrams, because the help for moving the interior black 
dots around and showing the horizontal and vertical paths in different colors.]
 
Next, we need a mechanism to say a clause is satisfied.  Naturally, we make  be satisfied if and only Cj

if we can get a path from  to , and it helps to imagine these paths running vertically.  As for which Sj Tj

literal satisfies it, we create three vertical "tracks," one for each literal in the clause.  
 
Last, we need to say how  is satisfied when a literal  in it is or is not made true.  The idea is:Cj ℓi

 
Make the horizontal track in which  is false block the vertical track for  in .ℓi ℓi Cj

 
Whereas, the horizontal track in which  is true allows the vertical track to pass through---they might ℓi

look like they cross when drawn in the plane, but really one goes over the other---without an "at-grade 
intersection" represented by a node. Here is the field of play for :n =  4,  m =  3

 

 



 

 
 Here is the whole thing for the formula used before:
 

𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 11 x⏨21 31) ( 12 22 x⏨32) (x⏨13 x⏨33 x⏨43)
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𝜙 =  x  ∨   ∨  x  ∧  x  ∨  x  ∨   ∧   ∨   ∨  ( 1 x⏨2 3) ( 1 2 x⏨3) (x⏨1 x⏨3 x⏨4)

 
Once again, the size of the graph is  nodes and the complexity of the reduction function is O m + n( )

similar.  The one detail that is slightly trickier than before is that the edges out of the node for the  in x1

clause  have to "know" that there was an  in clause , so the horizontal edge goes left to there C2 x1 C1

rather than all the way back to the start node .  But by labeling nodes  for  or  in clause  s1 ±xij xi x⏨i Cj

and sorting on one index or the other, one can determine all the edges needed.  Such use of sorting is 
typical of quasilinear time.  (Note that each vertical track has exactly one node, so this issue does not 
arise for the vertical edges.)  The correctness of this reduction is a self-study exercise.
 
Moving on from here, what we note is that generating the graph edge-by-edge only requires space to 
manipulate indices of size .  If we back off the use of sorting, we can generate  node-by-O n(log ) G𝜙

node, needing only to store the current indices  and , on pain of hunting through  multiple times---for i j 𝜙

running time order .  The reduction function then runs in logarighmic space.  The notation is:m + n( )2

 
• The class of languages decidable in  space is denoted by either  or O n(log ) L DLOG.

• The class of functions computable in  space is denoted by .O n(log ) FL
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Definition: A language  mapping-reduces to a language  in logarithmic space (logspace), written A B

, if  mapping-reduces to  via a function .  A ≤  Bm
log A B f ∈  FL

 
We haven't really discussed space complexity yet, so this is getting head of the story---we will go back 
to the rest of ALR chapter 27 and some corresponding notes by Debray first.  But in another sense this 
concept can be regarded as already familiar, because:
 
Every mapping reduction we have seen in this course is in fact computable in logarithmic space.
 

• The Cook-Levin reduction can be computed in  space because it only needs to keep O n(log )

track of one wire label  at a time and determine which gates it comes from and goes to.  Thus wk

3SAT is complete for  under the relation too.NP ≤ m
log

• The reduction functions by component design are likewise in .  FL

 

One advantage of is that it enables finer distinctions in complexity.≤ m
log

 
• The class of languages decidable by NTMs running in  space is denoted by .O n(log ) NL

 
Graph Accessibility Problem (GAP)
Instance: A directed graph  and nodes .G =  V, E( ) s, t ∈  V
Question: Is there a path from  to  in ?s t G
 
Theorem: GAP is in .NL

 
Proof.  (by picture)  A nondeterministic Turing machine can guess a path from  to  (when one N s t
exists) by keeping  on one tape and maintaining its current node (initially ) on another.  t s
 

 

 

 

t

⟨ s, p , s, q , p, r , p, u , q, t , s, v … , Graph G =  V, E  given as edge list⟩,  plus  s;  t( ) ( ) ( ) ( ) ( ) ( ) ( )

q

n

-size O n(log )
bounded tapes

Always has current node, initially .s

Read-only input tape, not counted against space usage

Fixed copy of  for easy comparisont

Since there is a path of length  if there is one at all, <  n N
can decrement from  at each step and halt and reject on n 0.



 first copies , , and  onto worktapes as shown.  A nondeterministic computation path by  N s t n =  |V| N
begins with a "guess" of an out-neighbor of , such as  or  above.  This overwrites , and then  s p q s N
compares it against  to see if the goal has been reached.  If so, this computation path by   accepts, t N
and this makes the whole machine accept.  If not,  decrements its third tape, which acts as a N
"countdown clock."  If the clock hits , this particular path by  halts and does not accept (other paths 0 N
might accept); thus we enforce the condition that  cannot have computations that loop forever.  Else, N

 reiterates the "guess" step to move to another node.N
 
The point is that  need only maintain one current node along a path.  On a lucky guess of those N
neighbors that make progress toward , eventually reaching  itself, the corresponding computation t t
path will accept.  Thus  accepts  if and only if there is a path from  to , and using only the N ⟨G, s, t⟩ s t
work space shown---which is logarithmic. (Whereas, a deterministic TM using breadth-first search 
would need linear space to store all the nodes already visited.)  ☒
 

 

 


