
CSE491/596 Lecture Mon. Oct. 30: Time and Space Complexity Classes

Say that a deterministic Turing machine runs in space if for all and input strings of length M s n() n x

, halts while changing at most tape cells. For a nondeterministic TM , we make the n M x() s n() N

"conservative" definition that runs in space if for all and input strings of length , all N s n() n x n

computations by on input halt while changing at most tape cells.N x s n()

This definition allows a read-only input tape not to count against the space bound. By default, for these
weeks, we will consider a multitape Turing machine to have a read-only input tape and any finite
number of worktapes. Here again is the picture of the NTM for GAP from last Friday:

The worktape with prevents from getting into an infinite loop if it would keep following a cycle in the n N

graph. Thus all computations by halt before trying more than steps in the trial path.N n

We make the following simplifying assumption: The space usage is either finite, i.e. , or at s n = O 1() ()

least logarithmic, i.e., . [In fact, there are machines that use space in a s n = 𝛺 n() (log) 𝛩 n(log log)
meaningful manner, but they are esoteric and we will ignore them.]

Definition: denotes the class of languages accepted by deterministic TMs that run in DSPACE s n[()]

space . And denotes the class of languages accepted by nondeterministic TMs s n() NSPACE s n[()]

that run in space . -notation is understood collectively, i.e., means the union s n() O DSPACE O s n[(())]

of for all constants and . Important cases of this definition have their own DSPACE cs n + d[()] c d
names:

• is called for deterministic logarithmic space. When the might be DSPACE O n[(log)] L L

confused with a language, people write instead.DLOG

• is called for nondeterministic logarithmic space. The generally NSPACE O n[(log)] NL NL

doesn't get confused, but when people write for , they write for .DLOG L NLOG NL

t

⟨ s, p , s, q , p, r , p, u , q, t , s, v … , Graph G = V, E given as edge list⟩, plus s; t() () () () () () ()

q

n

-size O n(log)
bounded tapes

Always has current node, initially .s

Read-only input tape, not counted against space usage

Fixed copy of for easy comparisont

Since there is a path of length if there is one at all, < n N

can decrement from at each step and halt and reject on n 0.

• The class of functions computed in deterministic logarithmic space is sometimes denoted by FL

(and not which would be an ugly name). Likewise means functions computable in FLOG FP

polynomial time. That is a case of a theorem to be proved below. We write FL ⊆ FP

 to mean that mapping-reduces to via a function in . Log-space reducibility is A ≤ B
log
m A B FL

thus a refinement of polynomial-time reducibility.
• is called for (the class of languages decided by) deterministic linear DSPACE O n[()] DLBA

bounded automata.
• is called for (the class of languages decided by) nondeterministic linear NSPACE O n[()] NLBA

bounded automata.
• is called for deterministic polynomial space. DSPACE nO 1()

PSPACE

• would be called but we will see a theorem, called Savitch's NSPACE nO 1()
NPSPACE

Theorem, that makes this equal to . PSPACE

What about constant space? The following theorem is not as immediate as you might think:

Theorem: , meaning the class of regular languages.DSPACE O 1 = NSPACE O 1 = REG[()] [()]

If the Turing machines had to go left-to-right only on their read-only input tapes then the constant space
usage would make them easy to convert into finite automata. But the Turing machines are allowed to
move left on their input tapes. This complicates the proof. To show that the complication is inevitable:
In terms of the constant space used by an NTM , the smallest equivalent DFA can need a number k N

of states that is doubly exponential in . But it is still a DFA, regardless of the length of the input , k n x

so the language is regular. The rest of this lecture into Wednesday will establish the known L N()
inclusion relationships with time-based complexity classes per the following "landscape diagram":

P

NP co-NP
𝜃 > 45∘

A

B

means A ≤ B
log
m

REG

∃
q ∀

q

Note differences from
the unbounded
computability case:
NP intersect co-NP is
not known (or believed)
to equal P, and the
quantifiers are length-
bounded by a polynomial.

FACT

L

NL

GAP

CVP

PSPACE

TQBF

Known:
EXP ≠ P,
PSPACE ≠ NL
L ≠ REG

(and , etc.)EXP ≠ REC ≠ RE

SAT, G3C TAUT

L

Under log-space reductions, because all languages in are equivalent, the region for L ≡ m
log

deterministic logspace should really warp into a point. If we could get a notion of "regular reductions" to
suffice for all the NP-completeness reductions we want, we would only need to collapse into a REG

point. As it stands, we can ignore little blemishes to get the big picture. It puts major classes for the
four main complexity measures, viz. , , , and , onto one "landscape" DTIME DSPACE NTIME NSPACE

map.

Before we go into weirdnesses like why shows as closed under complements whereas does NL NP

not, we must establish the basic "positive knowledge" about which classes are included in others. We
don't have much "negative knowledge" about non-inclusions between classes of different complexity
measures at all. The central mystery is why this knowledge is so much less than what we know about
separations between classes defined for the same complexity measure. The following theorem shows
the yawning exponential gaps in our current best upper bounds.

Theorem: For any "reasonable" time measure and space measure ,t(n) ≥ n + 1 s(n) ≥ nlog2

DSPACE[s(n)] ⊆ NSPACE[s(n)] ⊆ DTIME[2]O(s(n))

 DTIME[t(n)] ⊆ NTIME[t(n)] ⊆ DSPACE[O(t(n))] ⊆⋯

Proof: The first and third containments are immediate by definition. For the second, let be an NTM N

with some number of tapes and work alphabet that runs in space , and consider any input to k 𝛤 s(n) x

, putting as usual. The notion of "reasonable'' allows us to lay out in advance tape cells N n = |x| s(n)

that is allowed to change. Thus any configuration has the form where is the current N I I = ⟨q, w, h⟩ q

state, represents the current content of the cells can change, and gives the head w ∈ 𝛤
s(n) N h

positions on all tapes, including the location of the input head reading . Note that does not need to x I

give the parts that don't change---if all cells occupied by are kept constant, doesn't need to include x w

any of them. So the total number of different possible IDs we need to consider on input is at mostx

.|Q| ⋅ |𝛤| ⋅ n + 2 s n + 2k - 2s n() ()(())k-1

Since , is at least , so the third factor does not dominate the second s(n) ≥ (n)log2 |𝛤|s n() 2 = n
(n)log2

factor and the whole size is bounded by . (The and allow the heads to occupy blanks 2O(s(n)) +2 2k - 2

to the left or right of and the cells they can change, however they are laid out on the tapes; they don't x

really matter to the size estimate.)2O(s(n))

Now we define a directed graph with the IDs as its nodes and the relation as its Gx I, J, … I ⊢ JN

edge relation. Then accepts if and only if breadth-first search from the starting ID finds an N x I (x)0

accepting ID (which by "good housekeeping" can be a unique node). Since BFS runs in time t = If
polynomial in the size of the graph, and polynomial-in- still gives , we obtain a 2O(s(n)) 2O(s(n))

deterministic algortihm that decides whether in time . This proves the second x ∈ L(N) 2O(s(n))

containment.

In-passing, we note that in the case is just . Also, the mapping s n = O n ,() (log) DTIME 2O s n(()) P

reduction is computable in logspace---because we can just treat the code of g x = ⟨G , I x , I ⟩N() x 0() f

any ID as an -sized binary number and so lay out all the edges of using just the of the I O n(log) Gx 𝛿

fixed NTM accepting a given language , we get that GAP is complete for under N A ∈ NL NL ≤ m
log

reductions.

The fourth containment is (IMHO) best described as a depth-first search. Given a -tape NTM that k N

runs in time , we may suppose has binary nondeterminism, so that on any input of length t(n) N x n

there are at most bits of nondeterminism that can use. We can organize all the possible t(n) N

guesses as branches of a binary tree of depth and allocate cells to hold the current we y T t(n) t(n) y

are trying. Since cannot possibly use more than tape cells, we need only N(x) kt(n) t(n) + kt(n)

space total to do a full transversal of . We accept if and only if an accepting branch is found. This T x

simulation takes roughly time but it all operates within space, so 2t(n) O(t(n))

.L(N) ∈ DSPACE O t n][(())

For example with we gets(n) = O(n)log

 . L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

This brings us back full-circle to the deterministic space measure, and we can ratchet up to the next
level:

.PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE

A reminder again that , not , which is called . We do in fact EXP = DTIME[2nO 1()

] DTIME 2O n()
E

have by Savitch's Theorem, which we will prove next week in-tandem with PSPACE = NPSPACE
showing that the language of true quantified Boolean formulas (called TQBF or, confusingly, QBF) is

complete for under reductions. But basically the only multi-link chain of differences PSPACE ≤ m
log

that we know from these classes is

.NL ⊊ PSPACE ⊊ EXPSPACE

One can put in place of here, and also prepend as a fourth proper link, but the main fact is L NL REG

the two exponential gaps thus-far seemingly needed to climb back around to the deterministic or
nondeterministic space measure. Of final note today is the following theorem.

Immerman-Szelépcsenyi Theorem: For every space measure , is s n = 𝛺 n() (log) NSPACE s n [()]

closed under complements. In particular, co- , and for linear space, co- . NL = NL NLBA = NLBA

This was proved independently by Neil Immerman and Robert Szelépcsenyi in 1988. The proof is
difficult and skipped here.
[The next lecture will cover the deterministic Time and Space Hierarchy Theorems in-tandem using a technical
lemma from the notes https://cse.buffalo.edu/~regan/cse491596/CSE596inclusions.pdf]

