
CSE491/596 Lecture Mon. Oct. 30: Time and Space Complexity Classes
 
Say that a deterministic Turing machine  runs in space  if for all  and input strings  of length M s n( ) n x

,  halts while changing at most  tape cells.  For a nondeterministic TM , we make the n M x( ) s n( ) N

"conservative" definition that  runs in space  if for all  and input strings  of length , all N s n( ) n x n

computations by  on input  halt while changing at most  tape cells.N x s n( )
 
This definition allows a read-only input tape not to count against the space bound.  By default, for these 
weeks, we will consider a multitape Turing machine to have a read-only input tape and any finite 
number of worktapes.  Here again is the picture of the NTM for GAP from last Friday:
 

 
The worktape with  prevents  from getting into an infinite loop if it would keep following a cycle in the n N

graph.  Thus all computations by  halt before trying more than  steps in the trial path.N n
 
We make the following simplifying assumption: The space usage is either finite, i.e. , or at s n  =  O 1( ) ( )

least logarithmic, i.e., .  [In fact, there are machines that use  space in a s n = 𝛺  n( ) (log ) 𝛩 n(log log )
meaningful manner, but they are esoteric and we will ignore them.]   
 
Definition:  denotes the class of languages accepted by deterministic TMs that run in DSPACE s n[ ( )]

space .  And  denotes the class of languages accepted by nondeterministic TMs s n( ) NSPACE s n[ ( )]

that run in space .  -notation is understood collectively, i.e.,  means the union s n( ) O DSPACE O s n[ ( ( ))]

of  for all constants  and .  Important cases of this definition have their own DSPACE cs n + d[ ( ) ] c d
names:
 

•  is called  for deterministic logarithmic space.  When the  might be DSPACE O n[ (log )] L L

confused with a language, people write  instead.DLOG

•  is called  for nondeterministic logarithmic space.  The  generally NSPACE O n[ (log )] NL NL

doesn't get confused, but when people write  for , they write  for .DLOG L NLOG NL

 

 

t

⟨ s, p , s, q , p, r , p, u , q, t , s, v … , Graph G =  V, E  given as edge list⟩,  plus  s;  t( ) ( ) ( ) ( ) ( ) ( ) ( )

q

n

-size O n(log )
bounded tapes

Always has current node, initially .s

Read-only input tape, not counted against space usage

Fixed copy of  for easy comparisont

Since there is a path of length  if there is one at all, <  n N

can decrement from  at each step and halt and reject on n 0.



• The class of functions computed in deterministic logarithmic space is sometimes denoted by  FL

(and not  which would be an ugly name).  Likewise  means functions computable in FLOG FP

polynomial time.  That  is a case of a theorem to be proved below.  We write FL ⊆  FP

 to mean that  mapping-reduces to  via a function in .  Log-space reducibility is A ≤  B
log
m A B FL

thus a refinement of polynomial-time reducibility.
•  is called  for (the class of languages decided by) deterministic linear DSPACE O n[ ( )] DLBA

bounded automata.
•  is called  for (the class of languages decided by) nondeterministic linear NSPACE O n[ ( )] NLBA

bounded automata.
•  is called  for deterministic polynomial space.  DSPACE nO 1( )

PSPACE

•  would be called  but we will see a theorem, called Savitch's NSPACE nO 1( )
NPSPACE

Theorem, that makes this equal to . PSPACE

 
What about constant space?  The following theorem is not as immediate as you might think:
 
Theorem: , meaning the class of regular languages.DSPACE O 1  =  NSPACE O 1  =  REG[ ( )] [ ( )]
 
If the Turing machines had to go left-to-right only on their read-only input tapes then the constant space 
usage would make them easy to convert into finite automata.  But the Turing machines are allowed to 
move left on their input tapes.  This complicates the proof.  To show that the complication is inevitable: 
In terms of the constant space  used by an NTM , the smallest equivalent DFA can need a number k N

of states that is doubly exponential in .  But it is still a DFA, regardless of the length  of the input , k n x

so the language  is regular.  The rest of this lecture into Wednesday will establish the known L N( )
inclusion relationships with time-based complexity classes per the following "landscape diagram":
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to equal P, and the 
quantifiers are length-
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Under log-space reductions, because all languages in  are  equivalent, the region for L ≡ m
log

deterministic logspace should really warp into a point.  If we could get a notion of "regular reductions" to 
suffice for all the NP-completeness reductions we want, we would only need to collapse  into a REG

point.  As it stands, we can ignore little blemishes to get the big picture.  It puts major classes for the 
four main complexity measures, viz. , , , and , onto one "landscape" DTIME DSPACE NTIME NSPACE

map.
 
Before we go into weirdnesses like why  shows as closed under complements whereas  does NL NP

not, we must establish the basic "positive knowledge" about which classes are included in others.  We 
don't have much "negative knowledge" about non-inclusions between classes of different complexity 
measures at all.  The central mystery is why this knowledge is so much less than what we know about 
separations between classes defined for the same complexity measure.  The following theorem shows 
the yawning exponential gaps in our current best upper bounds.
 
Theorem: For any "reasonable" time measure  and space measure ,t(n) ≥ n + 1 s(n) ≥ nlog2

DSPACE[s(n)] ⊆ NSPACE[s(n)] ⊆ DTIME[2 ]O(s(n))    

    DTIME[t(n)] ⊆ NTIME[t(n)] ⊆ DSPACE[O(t(n))] ⊆⋯    

 
Proof:  The first and third containments are immediate by definition.  For the second, let  be an NTM N

with some number  of tapes and work alphabet  that runs in space , and consider any input  to k 𝛤 s(n) x

, putting  as usual.  The notion of "reasonable'' allows us to lay out in advance  tape cells N n = |x| s(n)

that  is allowed to change.  Thus any configuration  has the form  where  is the current N I I = ⟨q, w, h⟩ q

state,  represents the current content of the cells  can change, and  gives the head w ∈ 𝛤
s(n) N h

positions on all tapes, including the location of the input head reading .  Note that  does not need to x I

give the parts that don't change---if all cells occupied by  are kept constant,  doesn't need to include x w

any of them.  So the total number of different possible IDs we need to consider on input  is at mostx
 
 

.|Q| ⋅  |𝛤|  ⋅  n + 2 s n  +  2k -  2s n( ) ( )( ( ) )k-1

 
 

Since ,  is at least , so the third factor does not dominate the second s(n) ≥ (n)log2 |𝛤|s n( ) 2 = n
(n)log2

factor and the whole size is bounded by .  (The  and  allow the heads to occupy blanks 2O(s(n)) +2 2k - 2

to the left or right of  and the cells they can change, however they are laid out on the tapes; they don't x

really matter to the  size estimate.)2O(s(n))

 
 

 

 



 
 
Now we define a directed graph  with the IDs  as its nodes and the relation  as its Gx I, J, … I ⊢  JN

edge relation.  Then  accepts  if and only if breadth-first search from the starting ID  finds an N x I (x)0

accepting ID (which by "good housekeeping" can be a unique node ).  Since BFS runs in time t =  If
polynomial in the size of the graph, and polynomial-in-  still gives , we obtain a 2O(s(n)) 2O(s(n))

deterministic algortihm that decides whether  in time .  This proves the second x ∈ L(N) 2O(s(n))

containment.
 
In-passing, we note that in the case   is just .  Also, the mapping s n  =  O n ,( ) (log ) DTIME 2O s n( ( )) P

reduction  is computable in logspace---because we can just treat the code of g x  =  ⟨G , I x , I ⟩N( ) x 0( ) f

any ID  as an -sized binary number and so lay out all the edges of  using just the  of the I O n(log ) Gx 𝛿

fixed NTM  accepting a given language , we get that GAP is complete for  under  N A ∈  NL NL ≤ m
log

reductions.
 
The fourth containment is (IMHO) best described as a depth-first search.  Given a -tape NTM  that k N

runs in time , we may suppose  has binary nondeterminism, so that on any input  of length  t(n) N x n

there are at most  bits of nondeterminism that  can use.  We can organize all the possible t(n) N

guesses  as branches of a binary tree  of depth  and allocate  cells to hold the current  we y T t(n) t(n) y

are trying.  Since  cannot possibly use more than  tape cells, we need only  N(x) kt(n) t(n) + kt(n)

space total to do a full transversal of .  We accept  if and only if an accepting branch is found.  This T x

simulation takes roughly  time but it all operates within  space, so 2t(n) O(t(n))

.L(N) ∈ DSPACE O t n ][ ( ( ))

 

 



For example with  we gets(n) = O( n)log
 

 .  L ⊆  NL ⊆  P ⊆  NP ⊆  PSPACE
 

This brings us back full-circle to the deterministic space measure, and we can ratchet up to the next 
level:

.PSPACE ⊆  NPSPACE ⊆  EXP ⊆  NEXP ⊆  EXPSPACE
 
A reminder again that , not , which is called .  We do in fact EXP =  DTIME[2nO 1( )

] DTIME 2O n( )
E

have  by Savitch's Theorem, which we will prove next week in-tandem with PSPACE =  NPSPACE
showing that the language of true quantified Boolean formulas (called TQBF or, confusingly, QBF) is 

complete for  under  reductions.  But basically the only multi-link chain of differences PSPACE ≤ m
log

that we know from these classes is 
 

.NL ⊊  PSPACE ⊊  EXPSPACE
 
One can put  in place of  here, and also prepend  as a fourth proper link, but the main fact is L NL REG

the two exponential gaps thus-far seemingly needed to climb back around to the deterministic or 
nondeterministic space measure.  Of final note today is the following theorem.
 
Immerman-Szelépcsenyi Theorem: For every space measure , is s n  =  𝛺 n( ) (log ) NSPACE s n  [ ( )]

closed under complements.  In particular, co- , and for linear space, co- .  NL =  NL NLBA =  NLBA

 
This was proved independently by Neil Immerman and Robert Szelépcsenyi in 1988.  The proof is 
difficult and skipped here.
[The next lecture will cover the deterministic Time and Space Hierarchy Theorems in-tandem using a technical 
lemma from the notes https://cse.buffalo.edu/~regan/cse491596/CSE596inclusions.pdf ]

 

 


