
CSE491/596 Lecture Wed. 11/11: Time and Space Hierarchy Theorems
 
The following theorem implies that the Cook-Levin reduction can be made to run in quasilinear time (for 
languages that are in nondeterministic  time to begin with).n n(log )O 1( )

 
Theorem 1 [Hennie and Stearns, 1966]: Every -worktape DTM  (or NTM ) running in time  k M N t n( )

and space  can be simulated by a 2-worktape DTM  (respectively, 2-worktape NTM ) that runs s n( ) M' N'

in time  and space .  This holds whether the input tape is read-write and O t n t n( ( )log ( )) O s n( ( ))
counted as a worktape, or read-only and counted separately.
 
Theorem 1' [Pippenger and Fischer, 1977]: Moreover, the simulating machine  can be oblivious, M'

meaning for all  and , the locations of the tape heads of  at any timestep  are the same n x, y ∈  𝛴n M' t

on input  as they are on input .  In consequence,  can be accepted by a highly uniform family y x L M( )

 of Boolean circuits, where each  has size .C[ n]∞n=0 Cn O t n t n( ( )log ( ))

 
Proof Sketch.  The proof uses a caching scheme with amortized time analysis of successive doubling 
similar to that of the C++ vector class and memory management of arrays in other languages.  First 
treat all tapes of  and  as being two-way infinite.  The  tapes of  are maintained as  "tracks" M M' k M 2k

of the first tape of  using work alphabet .  M' 𝛤' =  𝛤2k

 
The issue with a straightforward simulation of the  heads of  on these tracks is delay when the k M

heads become widely spaced apart---then it takes up to  steps by  to read the  chars they are 2s n( ) M' k

reading and execute the corresponding actions.  The caching scheme keeps the  heads always close k

to the central column 0 of the first tape of , which is treated as divided into powers of 2 like so:M

 
The second tape is needed only to copy blocks of characters while shifting them into or out of higher 
cache levels nearer the "CPU" in column 0.  These movements by  are in response to head M'

movements by  but the point of the Pippenger-Fischer refinement is that they can be scheduled in M
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advance---with only the decision to shift-or-not-shift during the movement being taken on-the-fly.  Every 
"inner jag" involving just columns , ,  simulates a new step by ,while the outer jags may be -1 0 1 M
needed to help set up for the next step:
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The time analysis simply needs computing the number of timesteps  by  as a function  of the t' M' g t( )

number  of "inner jags".  A proof by induction shows .  t g t  =  O t t( ) ( log ) ☒
 
This result is used only to justify that the Turing machines we give to our universal and "diagonal" 
simulators can be thought of as already having been reduced to 2 worktapes.  The proof  highlights the 
difference between a timestep of the machine  being simulated and each step of the simulator .  M M'
 
Offline Simulation Lemma:  We can build a single 3-tape DTM  with tape alphabet  M3 𝛤 = {0, 1, _}3

such that for any DTM  with input alphabet  but any number  of tapes and work alphabet M 𝛴 = {0, 1} k

 of any size, there is a constant  such that for any  and , the first  steps of the 𝛤M C > 0 w ∈ 𝛴
* t > 0 t

computation of  on input  are simulated by the first  steps of  on input , M w C + Ct (t)log M3 x = ⟨w, M⟩

using at most  times as much space, where  simulates .C M3 M w( )

 
Proof: The constant  depends on the given .  It does not depend on  or on the simulating C M w

machine's own input .  It mostly comes from the string length of the code  of  and reflects not x ⟨M⟩ M

only the number of states and instructions but also the overhead for encoding  by the binary-plus-𝛤M

blank alphabet .  It also gets a contribution from the constant factor in the  time overhead for 𝛤3 O( t)log

reducing  tapes to 2 tapes to produce the machine  above, and then re-code its big alphabet over k M'

 

 



 to produce a machine we call .  Note that going from time  to time  is markedly {0, 1, _} M2 t O(t t)log

better than the  time shown in class for getting down to a single tape.  The machine  on input O(t )2 M3

 first copies the  part to its third tape.  The  part is an "extra" that can be ignored in the main ⟨w, M⟩ M w

proof (i.e., pretend ; it would come into play if we talked about "universal languages for w =  𝜖)
complexity classes," not just diagonal languages for them.   Here is a picture:

 
The rest of the proof is by optical inspection of this memory map.  There are two sources of slowdown:
 

• It can take up to  steps for  to find the next instruction in the code of  as given.  (There's C M3 M

also the initial  steps to copy the code of  to the third worktape to begin with.)C M

• Every character in the work alphabet ---which might be huge coming out of the -track tape 𝛤M k
construction---has to be recorded and updated in binary code.  But the extra time and space for 
this is at most the constant factor  depending only on  again.C M

 
But the slowdown is never more than this, working step-of-  by steps-of- .  If  halts within ' M M' M w2( ) t

steps of its own time-clock, the time for  is at most .  And the space M w, M, maybepadding3( ) C + Ct'

used is at most .  C + Cs n( ) ☒
 
Now we are ready to employ the padding feature to prove the main results:
 
Space Hierarchy Theorem:
If  are "reasonable" space functions and , then  is properly s , s1 2 s (n) = o(s (n))1 2 DSPACE s n ][ 1( )

contained in .  DSPACE s n ][ 2( )
 
Thus for example, in cases starting with  and , we get:s (n) = n1 log2 s (n) = (n) ≝ ( n)2 log2 log 2

 
DLOG ⊊  DSPACE  n  ⊊  DSPACE  n  ⊊  ⋯  ⊊ DSPACE O n(log )2 (log )3 [ ( )]

            ⊊ DSPACE n n] ⊊ DSPACE n  ⊊ DSPACE n  ⊊  ⋯ ⊊ PSPACE [ log 2 3

 

 

Input tape (read-only)

x =  w  ⋯  w  code of M maybe y =  extra @@@@@@@ padding @@@@@@[ 1 m][ ][ ]

 code of M  [ 2 ]

C

Worktapes of  (assumed already reduced to 2 worktapes)M2

M :3

s n2( )

which is greater than  for large enough Cs n1( ) x



 
The hierarchy for deterministic time is almost as tight:
 
Deterministic Time Hierarchy Theorem:
If  are "reasonable" time functions and , then  is properly t , t1 2 t (n) (t (n)) = o(t (n))1 log 1 2 DTIME t n)][ 1(

contained in .DTIME t n)][ 2(
 
In particular, this means that even within , deterministic time is quite stratified:P

 

DLIN ≝  DTIME O n  ⊊  DTIME n  ⊊  DTIME n  [ ( )] 1.000001 n

.          ⊊  DTIME n  ⊊  DTIME n  ⊊  ⋯  ⊊  P2 3

 
So why can't we tell that SAT does not belong to , let alone that it does not belong to DTIME n1.000001

?  A good question!  The best road for understanding the issue is to see how the common proof of P

both theorems works.  The notes by Debray prove only a weaker version with  in place of the t (n)1

 factor, and the reason the professor at Stanford did this is that existing presentations of the (t (n))log 1

stronger result are so 'yucky' that Allender and Loui and I didn't prove them in our notes either.  
However, I found the above way to roll several technical propositions into a single statement that gives 
the springboard for the final diagonalization step of the proof.
 
Proof of the Time and Space Hierarchy Theorems:
We describe diagonal languages  and D ∈ DSPACE[s (n)] ⧵DSPACE s n ]s 2 [ 1( )

 in terms of machines  and  that expressly run within the D ∈ DTIME t n)] ⧵DTIME t n)]t [ 2( [ 1( Ms Mt

space bound  and time bound , respectively.  Since their descriptions differ only in the initial s (n)2 t (n)2

detail, we describe both machines in the same breath.  They each have the same three tapes as  M3

above, plus  has a fourth tape to count up to ---which is possible by the definition of  being Mt t (n)2 t (n)2

"reasonable" (as said in Debray's notes---see note at the end on "fully time constructible" as said in 
other sources).  The point is that the machines  and  "embody"  but have three differences:Ms Mt M3

 
• The enforce the space bound  and/or the time bound  on themselves;s n2( ) t n2( )

• They run  not just on the given  but on the whole input tape ; andM w x =  ⟨w, M, y⟩

• They make the opposite accept/reject decisions from  simulating .M3 M x( )
 

 

 



 
On any input , taking ,  lays out  tape cells that its run of  will be allowed to use, x n = |x| Ms s (n)2 M3

while  starts counting down from .Mt t (n)2

 
Both machines try to decode  for some Turing machine .  If this is not possible, they x = ⟨w, M, y⟩ M

reject .x
 
On success, they begin simulating .  Note that the "own code"  remains part of , as does M (x2 ) ⟨M⟩ x

the "padding" .  Since the  part still gets copied to the third tape, this is a real-not-virtual run of  y ⟨M⟩ M2

with no overhead.  If the simulation doesn't stay within the  marked-off cells in , or takes longer s (n)2 Ms

than  steps in , the overstep is immediately detected and the machine rejects .t (n)2 Mt x
 
Otherwise, the run of  successfully completes.  If  accepts , then  and  each reject .  M (x2 ) M x Ms Mt x

If  rejects , that's when  and  accept .  M x Ms Mt x
 
Considering first the case of space,  enforces the  space bound on itself, so Ms s (n)2

.  Now suppose we had  .  Then there would be D ≝ L(M ) ∈ DSPACE[s (n)]s s 2 D ∈ DSPACE[s (n)]s 1

a DTM  running in  space such that .  Now consider what happens when  runs on Q s (n)1 L(Q) = Ds Ms

inputs of the form :x = ⟨w, Q, y⟩
 

1. After taking  and laying out  tape cells,  n = |x| = |⟨w, Q⟩| + |y| s (n)2 Ms

successfully decodes  into  and .x ⟨w, Q⟩ y

2.  segues into simulating  step-for-step.  There is a constant  Ms M (⟨Q, x⟩3 ) C

depending only on  such that this takes at most  tape cells.  Q C + Cs (n)1

What's important from the Offline Simulation Lemma is that  doesn't change C

if the padding-  part of  changes.y x
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x =  w  ⋯  w  code of M y =  extra @@@@@@@ padding @@@@@[ 1 m][ ][ ]
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C
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s n2( )



3. The space usage by  still could overstep the boundaries laid out by M (⟨Q, x⟩3 )

.  But by , for all  there is an  such that whenever Ms s (n) = o(s (n))1 2 C n0

, .  We may also wlog. suppose that .n ≥ n0 C + Cs (n) ≤ s (n)1 2 n ≥ |⟨w, Q⟩|0

4. So consider what happens on the particular input  with x = ⟨w, Q, y⟩

.  Then  has length , so .y = @n -|⟨w,Q⟩|0 x n = n0 C + Cs (n) ≤ s (n)1 2

5. Thus the simulation of  stays within the bound and runs to M (⟨Q, x⟩3 )

completion.  So  gives the opposite answer to .M (x)s M (x2 )

6. But  gives the same answer as , so we get .  This M (x2 ) Q(x) M (x) ≠ Q(x)s

contradicts .L(Q ) = Ds s

 
As with the original "diagonal contradiction," this implies that the "quixotic" machine  running in space Q

 cannot exist.  So  does not belong to .s (n)1 Ds DSPACE s n ][ 1( )

 
The argument for time is entirely similar.  The  business is a bit of a red t n t n  =  o t n1( )log 1( ) ( 2( ))

herring.  The conclusion really is that if  then  can accept a language in time  t n  =  o t n0( ) ( 2( )) Mt t n2( )

that cannot be accepted by a 2-worktape machine  in time .    The simulation for Q t n0( )

 then extends this conclusion down to .  t n t n  =  O t n1( )log 1( ) ( 0( )) DTIME t n[ 1( )]
 

 
Suppose  accepts  in time .  Then for any ,  on input  Q D ≝ L(M )t t t (n)1 y M3 ⟨Q, x⟩

where  stops within  steps, where the constant  depends x = ⟨w, Q, y⟩ Ct n + C0( ) C

 

 

Input tape (read-only)

x =  w  ⋯  w  code of Q maybe y =  extra @@@@@@@ padding @@@@@[ 1 m][ ][ ]

 code of Q [ ]

C

Worktapes of Q (assumed already reduced to 2 worktapes)

M :t

countdown from t n2( )
t n2( )

s n2( )



only on .  Since  by assumption about time functions, we can add in Q t (n) ≥ n + 11

the initial  steps for decoding  into  and get  such that for all , 2n x ⟨w, Q, y⟩ n0 n ≥ n0

.  Thus on the input Ct (n) + C + 2n + time to initialize t n ≤ t (n)0 [ 2( )] 2

 defined as before, the whole run by  finishes x =  ⟨w, Q, @ ⟩
n  - |⟨w,Q⟩|0 M (x)t

 and gives the opposite answer before the  "clock" counts all the way M (⟨Q, x⟩3 ) t (n)2

down and "rings."  So , which contradicts . L(M ) ≠ L(Q)t L(Q) = Dt ☒
 
 
A key hidden detail here is that the process of initializing the countdown clock to  must itself run t n2( )

within  time (on any input  of length ).  This is the definition of  being fully time t n2( ) x n t n2( )

constructible---and finally we see why it is included under the notion of being a "reasonable" time 
bound.  Of course we should expect this property for "natural" time-bounding functions: polynomials, 
exponentials...but the notion is needed to "protect" the theory from paradoxes that could arise from 
weird functions being used as time bounds [such as  for an uncomputable number  as the power, nc c
but actually much weirder ones are the issue].  
 
 
A word-to-the-wise about : If  is a rational number ( , then the time function DTIME nc c c ≥  1)

 is "reasonable."  If  is an uncomputable irrational number, however, then not.  If  is a t n  =  n( ) c c c
computable irrational number, hmmmmm... it depends...  But it is worth pointing out that for any real 
numbers , there are rational numbers  such that .c <  d q, r c <  q <  r <  d

 

 


