The following theorem implies that the Cook-Levin reduction can be made to run in quasilinear time (for languages that are in nondeterministic $n(\log n)^{O(1)}$ time to begin with).

Theorem 1 [Hennie and Stearns, 1966]: Every k-worktape DTM M (or NTM N) running in time $t(n)$ and space $s(n)$ can be simulated by a 2-worktape DTM M^{\prime} (respectively, 2-worktape NTM N^{\prime}) that runs in time $O(t(n) \log t(n))$ and space $O(s(n))$. This holds whether the input tape is read-write and counted as a worktape, or read-only and counted separately.

Theorem 1' [Pippenger and Fischer, 1977]: Moreover, the simulating machine M^{\prime} can be oblivious, meaning for all n and $x, y \in \Sigma^{n}$, the locations of the tape heads of M^{\prime} at any timestep t are the same on input y as they are on input x. In consequence, $L(M)$ can be accepted by a highly uniform family $\left[C_{n}\right]_{n=0}^{\infty}$ of Boolean circuits, where each C_{n} has size $O(t(n) \log t(n))$.

Proof Sketch. The proof uses a caching scheme with amortized time analysis of successive doubling similar to that of the C++ vector class and memory management of arrays in other languages. First treat all tapes of M and M^{\prime} as being two-way infinite. The k tapes of M are maintained as $2 k$ "tracks" of the first tape of M^{\prime} using work alphabet $\Gamma^{\prime}=\Gamma^{2 k}$.

The issue with a straightforward simulation of the k heads of M on these tracks is delay when the heads become widely spaced apart---then it takes up to $2 s(n)$ steps by M^{\prime} to read the k chars they are reading and execute the corresponding actions. The caching scheme keeps the k heads always close to the central column 0 of the first tape of M, which is treated as divided into powers of 2 like so:

The second tape is needed only to copy blocks of characters while shifting them into or out of higher cache levels nearer the "CPU" in column 0 . These movements by M^{\prime} are in response to head movements by M but the point of the Pippenger-Fischer refinement is that they can be scheduled in
advance---with only the decision to shift-or-not-shiff dutring the mone ment being taken on-the-fly. Every "inner jag" involving just columns $-1,0,1$ simulates a new step by M, while the outer jags may be needed to help set up for the next step:

The time analysis simply needs computing the number of timesteps t^{\prime} by M^{\prime} as a function $g(t)$ of the number t of "inner jags". A proof by induction shows $g(t)=O(t \log t)$. \boxtimes

This result is used only to justify that the Turing machines we give to our universal and "diagonal" simulators can be thought of as already having been reduced to 2 worktapes. The proof highlights the difference between a timestep of the machine M being simulated and each step of the simulator M^{\prime}.

Offline Simulation Lemma: We can build a single 3-tape DTM M_{3} with tape alphabet $\Gamma_{3}=\{0,1, \ldots\}$ such that for any DTM M with input alphabet $\Sigma=\{0,1\}$ but any number k of tapes and work alphabet Γ_{M} of any size, there is a constant $C>0$ such that for any $w \in \Sigma^{*}$ and $t>0$, the first t steps of the computation of M on input w are simulated by the first $C+C t \log (t)$ steps of M_{3} on input $x=\langle w, M\rangle$, using at most C times as much space, where M_{3} simulates $M(w)$.

Proof: The constant C depends on the given M. It does not depend on w or on the simulating machine's own input x. It mostly comes from the string length of the code $\langle M\rangle$ of M and reflects not only the number of states and instructions but also the overhead for encoding Γ_{M} by the binary-plusblank alphabet Γ_{3}. It also gets a contribution from the constant factor in the $O(\log t)$ time overhead for reducing k tapes to 2 tapes to produce the machine M^{\prime} above, and then re-code its big alphabet over
$\{0,1, \ldots\}$ to produce a machine we call M_{2}. Note that going from time t to time $O(t \log t)$ is markedly better than the $O\left(t^{2}\right)$ time shown in class for getting down to a single tape. The machine M_{3} on input $\langle w, M\rangle$ first copies the M part to its third tape. The w part is an "extra" that can be ignored in the main proof (i.e., pretend $w=\epsilon$); it would come into play if we talked about "universal languages for complexity classes," not just diagonal languages for them. Here is a picture:

Input tape (read-only)

$$
x=\left[w_{1} \cdots w_{m}\right][\text { code of } M][\text { maybe } y=\text { extra @@@@@@@ padding @@@@@@] }
$$

M_{3} :

$s_{2}(n)$
which is greater than $C s_{1}(n)$ for large enough x
Worktapes of M_{2} (assumed already reduced to 2 worktapes)
\square

The rest of the proof is by optical inspection of this memory map. There are two sources of slowdown:

- It can take up to C steps for M_{3} to find the next instruction in the code of M as given. (There's also the initial C steps to copy the code of M to the third worktape to begin with.)
- Every character in the work alphabet $\Gamma_{M}--$-which might be huge coming out of the k-track tape construction---has to be recorded and updated in binary code. But the extra time and space for this is at most the constant factor C depending only on M again.

But the slowdown is never more than this, working step-of- M by steps-of- M^{\prime}. If $M_{2}(w)$ halts within t^{\prime} steps of its own time-clock, the time for $M_{3}(w, M$, maybepadding $)$ is at most $C+C t^{\prime}$. And the space used is at most $C+\operatorname{Cs}(n)$. \boxtimes

Now we are ready to employ the padding feature to prove the main results:

Space Hierarchy Theorem:

If s_{1}, s_{2} are "reasonable" space functions and $s_{1}(n)=o\left(s_{2}(n)\right)$, then $\operatorname{DSPACE}\left[s_{1}(n)\right]$ is properly contained in DSPACE[$\left.s_{2}(n)\right]$.

Thus for example, in cases starting with $s_{1}(n)=\log _{2} n$ and $s_{2}(n)=\log ^{2}(n) \stackrel{\text { dat }}{=}(\log n)^{2}$, we get:

$$
\begin{aligned}
& \operatorname{DLOG} \subsetneq \operatorname{DSPACE}\left[(\log n)^{2}\right] \subsetneq \operatorname{DSPACE}\left[(\log n)^{3}\right] \subsetneq \cdots \subsetneq \operatorname{DSPACE}[O(n)] \\
& \subsetneq \operatorname{DSPACE}[n \log n] \subsetneq \operatorname{DSPACE}\left[n^{2}\right] \subsetneq \operatorname{DSPACE}\left[n^{3}\right] \subsetneq \cdots \subsetneq \operatorname{PSPACE}
\end{aligned}
$$

The hierarchy for deterministic time is almost as tight:

Deterministic Time Hierarchy Theorem:

If t_{1}, t_{2} are "reasonable" time functions and $t_{1}(n) \log \left(t_{1}(n)\right)=o\left(t_{2}(n)\right)$, then $\operatorname{DTIME}\left[t_{1}(n)\right]$ is properly contained in DTIME[$\left.t_{2}(n)\right]$.

In particular, this means that even within P, deterministic time is quite stratified:

$$
\begin{aligned}
\mathrm{DLIN} & \stackrel{\text { def }}{=} \mathrm{DTIME}[O(n)] \subsetneq \mathrm{DTIME}\left[n^{1.000001}\right] \subsetneq \mathrm{DTIME}[n \sqrt{n}] \\
& \subsetneq \mathrm{DTIME}\left[n^{2}\right] \subsetneq \mathrm{DTIME}\left[n^{3}\right] \subsetneq \cdots \subsetneq \mathrm{P} .
\end{aligned}
$$

So why can't we tell that SAT does not belong to DTIME [$\left.n^{1.000001}\right]$, let alone that it does not belong to P? A good question! The best road for understanding the issue is to see how the common proof of both theorems works. The notes by Debray prove only a weaker version with $\sqrt{t_{1}(n)}$ in place of the $\log \left(t_{1}(n)\right)$ factor, and the reason the professor at Stanford did this is that existing presentations of the stronger result are so 'yucky' that Allender and Loui and I didn't prove them in our notes either. However, I found the above way to roll several technical propositions into a single statement that gives the springboard for the final diagonalization step of the proof.

Proof of the Time and Space Hierarchy Theorems:

We describe diagonal languages $D_{s} \in \operatorname{DSPACE}\left[s_{2}(n)\right] \backslash \operatorname{DSPACE}\left[s_{1}(n)\right]$ and $D_{t} \in \operatorname{DTIME}\left[t_{2}(n)\right] \backslash \operatorname{DTIME}\left[t_{1}(n)\right]$ in terms of machines M_{s} and M_{t} that expressly run within the space bound $s_{2}(n)$ and time bound $t_{2}(n)$, respectively. Since their descriptions differ only in the initial detail, we describe both machines in the same breath. They each have the same three tapes as M_{3} above, plus M_{t} has a fourth tape to count up to $t_{2}(n)$---which is possible by the definition of $t_{2}(n)$ being "reasonable" (as said in Debray's notes---see note at the end on "fully time constructible" as said in other sources). The point is that the machines M_{s} and M_{t} "embody" M_{3} but have three differences:

- The enforce the space bound $s_{2}(n)$ and/or the time bound $t_{2}(n)$ on themselves;
- They run M not just on the given w but on the whole input tape $x=\langle w, M, y\rangle$; and
- They make the opposite accept/reject decisions from M_{3} simulating $M(x)$.
M_{t} :

Worktapes of M_{2} (assumed already reduced to 2 worktapes)
\square
$t_{2}(n)$ countdown from $t_{2}(n)$

On any input x, taking $n=|x|, M_{s}$ lays out $s_{2}(n)$ tape cells that its run of M_{3} will be allowed to use, while M_{t} starts counting down from $t_{2}(n)$.

Both machines try to decode $x=\langle w, M, y\rangle$ for some Turing machine M. If this is not possible, they reject x.

On success, they begin simulating $M_{2}(x)$. Note that the "own code" $\langle M\rangle$ remains part of x, as does the "padding" y. Since the $\langle M\rangle$ part still gets copied to the third tape, this is a real-not-virtual run of M_{2} with no overhead. If the simulation doesn't stay within the $s_{2}(n)$ marked-off cells in M_{s}, or takes longer than $t_{2}(n)$ steps in M_{t}, the overstep is immediately detected and the machine rejects x.

Otherwise, the run of $M_{2}(x)$ successfully completes. If M accepts x, then M_{s} and M_{t} each reject x. If M rejects x, that's when M_{s} and M_{t} accept x.

Considering first the case of space, M_{s} enforces the $s_{2}(n)$ space bound on itself, so $D_{s} \stackrel{\text { def }}{=} L\left(M_{s}\right) \in \operatorname{DSPACE}\left[s_{2}(n)\right]$. Now suppose we had $D_{s} \in \operatorname{DSPACE}\left[s_{1}(n)\right]$. Then there would be a DTM Q running in $s_{1}(n)$ space such that $L(Q)=D_{s}$. Now consider what happens when M_{s} runs on inputs of the form $x=\langle w, Q, y\rangle$:

1. After taking $n=|x|=|\langle w, Q\rangle|+|y|$ and laying out $s_{2}(n)$ tape cells, M_{s} successfully decodes x into $\langle w, Q\rangle$ and y.
2. M_{s} segues into simulating $M_{3}(\langle Q, x\rangle)$ step-for-step. There is a constant C depending only on Q such that this takes at most $C+C s_{1}(n)$ tape cells. What's important from the Offline Simulation Lemma is that C doesn't change if the padding- y part of x changes.
3. The space usage by $M_{3}(\langle Q, x\rangle)$ still could overstep the boundaries laid out by M_{s}. But by $s_{1}(n)=o\left(s_{2}(n)\right)$, for all C there is an n_{0} such that whenever $n \geq n_{0}, C+C s_{1}(n) \leq s_{2}(n)$. We may also wlog. suppose that $n_{0} \geq|\langle w, Q\rangle|$.
4. So consider what happens on the particular input $x=\langle w, Q, y\rangle$ with $y=@^{n_{0}-|\langle w, Q\rangle|}$. Then x has length $n=n_{0}$, so $C+C s_{1}(n) \leq s_{2}(n)$.
5. Thus the simulation of $M_{3}(\langle Q, x\rangle)$ stays within the bound and runs to completion. So $M_{s}(x)$ gives the opposite answer to $M_{2}(x)$.
6. But $M_{2}(x)$ gives the same answer as $Q(x)$, so we get $M_{s}(x) \neq Q(x)$. This contradicts $L\left(Q_{s}\right)=D_{s}$.

As with the original "diagonal contradiction," this implies that the "quixotic" machine Q running in space $s_{1}(n)$ cannot exist. So D_{s} does not belong to $\operatorname{DSPACE}\left[s_{1}(n)\right]$.

The argument for time is entirely similar. The $t_{1}(n) \log t_{1}(n)=o\left(t_{2}(n)\right)$ business is a bit of a red herring. The conclusion really is that if $t_{0}(n)=o\left(t_{2}(n)\right)$ then M_{t} can accept a language in time $t_{2}(n)$ that cannot be accepted by a 2-worktape machine Q in time $t_{0}(n)$. The simulation for $t_{1}(n) \log t_{1}(n)=O\left(t_{0}(n)\right)$ then extends this conclusion down to $\operatorname{DTIME}\left[t_{1}(n)\right]$.

Input tape (read-only)

$$
x=\left[w_{1} \cdots w_{m}\right][\text { code of } Q][\text { maybe } y=\text { extra @@@@@@@ padding @@@@@] }
$$

M_{t} :

Worktapes of Q (assumed already reduced to 2 worktapes)
\square
$t_{2}(n) \quad$ countdown from $t_{2}(n)$

Suppose Q accepts $D_{t} \stackrel{\text { def }}{=} L\left(M_{t}\right)$ in time $t_{1}(n)$. Then for any y, M_{3} on input $\langle Q, x\rangle$ where $x=\langle w, Q, y\rangle$ stops within $C t_{0}(n)+C$ steps, where the constant C depends
only on Q. Since $t_{1}(n) \geq n+1$ by assumption about time functions, we can add in the initial $2 n$ steps for decoding x into $\langle w, Q, y\rangle$ and get n_{0} such that for all $n \geq n_{0}$, $C t_{0}(n)+C+2 n+\left[\right.$ time to initialize $\left.t_{2}(n)\right] \leq t_{2}(n)$. Thus on the input $x=\left\langle w, Q, @^{n_{0}-|\langle w, Q\rangle|}\right\rangle$ defined as before, the whole run by $M_{t}(x)$ finishes $M_{3}(\langle Q, x\rangle)$ and gives the opposite answer before the $t_{2}(n)$ "clock" counts all the way down and "rings." So $L\left(M_{t}\right) \neq L(Q)$, which contradicts $L(Q)=D_{t}$. \boxtimes

A key hidden detail here is that the process of initializing the countdown clock to $t_{2}(n)$ must itself run within $t_{2}(n)$ time (on any input x of length n). This is the definition of $t_{2}(n)$ being fully time constructible---and finally we see why it is included under the notion of being a "reasonable" time bound. Of course we should expect this property for "natural" time-bounding functions: polynomials, exponentials...but the notion is needed to "protect" the theory from paradoxes that could arise from weird functions being used as time bounds [such as n^{c} for an uncomputable number c as the power, but actually much weirder ones are the issue].

A word-to-the-wise about $\operatorname{DTIME}\left[n^{c}\right]$: If c is a rational number ($c \geq 1$), then the time function $t(n)=n^{c}$ is "reasonable." If c is an uncomputable irrational number, however, then not. If c is a computable irrational number, hmmmmm... it depends... But it is worth pointing out that for any real numbers $c<d$, there are rational numbers q, r such that $c<q<r<d$.

