
CSE491/596 Lecture Wed. 11/11: Time and Space Hierarchy Theorems

The following theorem implies that the Cook-Levin reduction can be made to run in quasilinear time (for
languages that are in nondeterministic time to begin with).n n(log)O 1()

Theorem 1 [Hennie and Stearns, 1966]: Every -worktape DTM (or NTM) running in time k M N t n()

and space can be simulated by a 2-worktape DTM (respectively, 2-worktape NTM) that runs s n() M' N'

in time and space . This holds whether the input tape is read-write and O t n t n(()log ()) O s n(())
counted as a worktape, or read-only and counted separately.

Theorem 1' [Pippenger and Fischer, 1977]: Moreover, the simulating machine can be oblivious, M'

meaning for all and , the locations of the tape heads of at any timestep are the same n x, y ∈ 𝛴n M' t

on input as they are on input . In consequence, can be accepted by a highly uniform family y x L M()

 of Boolean circuits, where each has size .C[n]∞n=0 Cn O t n t n(()log ())

Proof Sketch. The proof uses a caching scheme with amortized time analysis of successive doubling
similar to that of the C++ vector class and memory management of arrays in other languages. First
treat all tapes of and as being two-way infinite. The tapes of are maintained as "tracks" M M' k M 2k

of the first tape of using work alphabet . M' 𝛤' = 𝛤2k

The issue with a straightforward simulation of the heads of on these tracks is delay when the k M

heads become widely spaced apart---then it takes up to steps by to read the chars they are 2s n() M' k

reading and execute the corresponding actions. The caching scheme keeps the heads always close k

to the central column 0 of the first tape of , which is treated as divided into powers of 2 like so:M

The second tape is needed only to copy blocks of characters while shifting them into or out of higher
cache levels nearer the "CPU" in column 0. These movements by are in response to head M'

movements by but the point of the Pippenger-Fischer refinement is that they can be scheduled in M

0 1 2-1-2-3 43 5 6 7 8 15⋯-4-5-6-7-8-15 ⋯

c1

c2

c3

c4

c5

d
e

f
g

h
i

j
k

l
m

n
o

p
q

d e f h i j k l m n o p qgc'3b

d e f h i j k l m n o p qgb c'3

advance---with only the decision to shift-or-not-shift during the movement being taken on-the-fly. Every
"inner jag" involving just columns , , simulates a new step by ,while the outer jags may be -1 0 1 M
needed to help set up for the next step:

0 1 2-1-2-3 43 5 6 7 8 15⋯-4-5-6-7-8-15 ⋯

c1

c2

c3

c4

c5

d
e

f
g

h
i

j
k

l
m

n
o

p
q

d e f h i j k l m n o p qgc'3
0 1 2-1-2-3 43 5 6 7 8 15

⋯

-4-5-6-7-8-15
⋯

t'

The time analysis simply needs computing the number of timesteps by as a function of the t' M' g t()

number of "inner jags". A proof by induction shows . t g t = O t t() (log) ☒

This result is used only to justify that the Turing machines we give to our universal and "diagonal"
simulators can be thought of as already having been reduced to 2 worktapes. The proof highlights the
difference between a timestep of the machine being simulated and each step of the simulator . M M'

Offline Simulation Lemma: We can build a single 3-tape DTM with tape alphabet M3 𝛤 = {0, 1, _}3

such that for any DTM with input alphabet but any number of tapes and work alphabet M 𝛴 = {0, 1} k

 of any size, there is a constant such that for any and , the first steps of the 𝛤M C > 0 w ∈ 𝛴
* t > 0 t

computation of on input are simulated by the first steps of on input , M w C + Ct (t)log M3 x = ⟨w, M⟩

using at most times as much space, where simulates .C M3 M w()

Proof: The constant depends on the given . It does not depend on or on the simulating C M w

machine's own input . It mostly comes from the string length of the code of and reflects not x ⟨M⟩ M

only the number of states and instructions but also the overhead for encoding by the binary-plus-𝛤M

blank alphabet . It also gets a contribution from the constant factor in the time overhead for 𝛤3 O(t)log

reducing tapes to 2 tapes to produce the machine above, and then re-code its big alphabet over k M'

 to produce a machine we call . Note that going from time to time is markedly {0, 1, _} M2 t O(t t)log

better than the time shown in class for getting down to a single tape. The machine on input O(t)2 M3

 first copies the part to its third tape. The part is an "extra" that can be ignored in the main ⟨w, M⟩ M w

proof (i.e., pretend ; it would come into play if we talked about "universal languages for w = 𝜖)
complexity classes," not just diagonal languages for them. Here is a picture:

The rest of the proof is by optical inspection of this memory map. There are two sources of slowdown:

• It can take up to steps for to find the next instruction in the code of as given. (There's C M3 M

also the initial steps to copy the code of to the third worktape to begin with.)C M

• Every character in the work alphabet ---which might be huge coming out of the -track tape 𝛤M k
construction---has to be recorded and updated in binary code. But the extra time and space for
this is at most the constant factor depending only on again.C M

But the slowdown is never more than this, working step-of- by steps-of- . If halts within ' M M' M w2() t

steps of its own time-clock, the time for is at most . And the space M w, M, maybepadding3() C + Ct'

used is at most . C + Cs n() ☒

Now we are ready to employ the padding feature to prove the main results:

Space Hierarchy Theorem:
If are "reasonable" space functions and , then is properly s , s1 2 s (n) = o(s (n))1 2 DSPACE s n][1()

contained in . DSPACE s n][2()

Thus for example, in cases starting with and , we get:s (n) = n1 log2 s (n) = (n) ≝ (n)2 log2 log 2

DLOG ⊊ DSPACE n ⊊ DSPACE n ⊊ ⋯ ⊊ DSPACE O n(log)2 (log)3 [()]

 ⊊ DSPACE n n] ⊊ DSPACE n ⊊ DSPACE n ⊊ ⋯ ⊊ PSPACE [log 2 3

Input tape (read-only)

x = w ⋯ w code of M maybe y = extra @@@@@@@ padding @@@@@@[1 m][][]

 code of M [2]

C

Worktapes of (assumed already reduced to 2 worktapes)M2

M :3

s n2()

which is greater than for large enough Cs n1() x

The hierarchy for deterministic time is almost as tight:

Deterministic Time Hierarchy Theorem:
If are "reasonable" time functions and , then is properly t , t1 2 t (n) (t (n)) = o(t (n))1 log 1 2 DTIME t n)][1(

contained in .DTIME t n)][2(

In particular, this means that even within , deterministic time is quite stratified:P

DLIN ≝ DTIME O n ⊊ DTIME n ⊊ DTIME n [()] 1.000001 n

. ⊊ DTIME n ⊊ DTIME n ⊊ ⋯ ⊊ P2 3

So why can't we tell that SAT does not belong to , let alone that it does not belong to DTIME n1.000001

? A good question! The best road for understanding the issue is to see how the common proof of P

both theorems works. The notes by Debray prove only a weaker version with in place of the t (n)1

 factor, and the reason the professor at Stanford did this is that existing presentations of the (t (n))log 1

stronger result are so 'yucky' that Allender and Loui and I didn't prove them in our notes either.
However, I found the above way to roll several technical propositions into a single statement that gives
the springboard for the final diagonalization step of the proof.

Proof of the Time and Space Hierarchy Theorems:
We describe diagonal languages and D ∈ DSPACE[s (n)] ⧵DSPACE s n]s 2 [1()

 in terms of machines and that expressly run within the D ∈ DTIME t n)] ⧵DTIME t n)]t [2([1(Ms Mt

space bound and time bound , respectively. Since their descriptions differ only in the initial s (n)2 t (n)2

detail, we describe both machines in the same breath. They each have the same three tapes as M3

above, plus has a fourth tape to count up to ---which is possible by the definition of being Mt t (n)2 t (n)2

"reasonable" (as said in Debray's notes---see note at the end on "fully time constructible" as said in
other sources). The point is that the machines and "embody" but have three differences:Ms Mt M3

• The enforce the space bound and/or the time bound on themselves;s n2() t n2()

• They run not just on the given but on the whole input tape ; andM w x = ⟨w, M, y⟩

• They make the opposite accept/reject decisions from simulating .M3 M x()

On any input , taking , lays out tape cells that its run of will be allowed to use, x n = |x| Ms s (n)2 M3

while starts counting down from .Mt t (n)2

Both machines try to decode for some Turing machine . If this is not possible, they x = ⟨w, M, y⟩ M

reject .x

On success, they begin simulating . Note that the "own code" remains part of , as does M (x2) ⟨M⟩ x

the "padding" . Since the part still gets copied to the third tape, this is a real-not-virtual run of y ⟨M⟩ M2

with no overhead. If the simulation doesn't stay within the marked-off cells in , or takes longer s (n)2 Ms

than steps in , the overstep is immediately detected and the machine rejects .t (n)2 Mt x

Otherwise, the run of successfully completes. If accepts , then and each reject . M (x2) M x Ms Mt x

If rejects , that's when and accept . M x Ms Mt x

Considering first the case of space, enforces the space bound on itself, so Ms s (n)2

. Now suppose we had . Then there would be D ≝ L(M) ∈ DSPACE[s (n)]s s 2 D ∈ DSPACE[s (n)]s 1

a DTM running in space such that . Now consider what happens when runs on Q s (n)1 L(Q) = Ds Ms

inputs of the form :x = ⟨w, Q, y⟩

1. After taking and laying out tape cells, n = |x| = |⟨w, Q⟩| + |y| s (n)2 Ms

successfully decodes into and .x ⟨w, Q⟩ y

2. segues into simulating step-for-step. There is a constant Ms M (⟨Q, x⟩3) C

depending only on such that this takes at most tape cells. Q C + Cs (n)1

What's important from the Offline Simulation Lemma is that doesn't change C

if the padding- part of changes.y x

Input tape (read-only)

x = w ⋯ w code of M y = extra @@@@@@@ padding @@@@@[1 m][][]

 code of M []

C

Worktapes of (assumed already reduced to 2 worktapes)M2

M :t

countdown from t n2()t n2()

s n2()

3. The space usage by still could overstep the boundaries laid out by M (⟨Q, x⟩3)

. But by , for all there is an such that whenever Ms s (n) = o(s (n))1 2 C n0

, . We may also wlog. suppose that .n ≥ n0 C + Cs (n) ≤ s (n)1 2 n ≥ |⟨w, Q⟩|0

4. So consider what happens on the particular input with x = ⟨w, Q, y⟩

. Then has length , so .y = @n -|⟨w,Q⟩|0 x n = n0 C + Cs (n) ≤ s (n)1 2

5. Thus the simulation of stays within the bound and runs to M (⟨Q, x⟩3)

completion. So gives the opposite answer to .M (x)s M (x2)

6. But gives the same answer as , so we get . This M (x2) Q(x) M (x) ≠ Q(x)s

contradicts .L(Q) = Ds s

As with the original "diagonal contradiction," this implies that the "quixotic" machine running in space Q

 cannot exist. So does not belong to .s (n)1 Ds DSPACE s n][1()

The argument for time is entirely similar. The business is a bit of a red t n t n = o t n1()log 1() (2())

herring. The conclusion really is that if then can accept a language in time t n = o t n0() (2()) Mt t n2()

that cannot be accepted by a 2-worktape machine in time . The simulation for Q t n0()

 then extends this conclusion down to . t n t n = O t n1()log 1() (0()) DTIME t n[1()]

Suppose accepts in time . Then for any , on input Q D ≝ L(M)t t t (n)1 y M3 ⟨Q, x⟩

where stops within steps, where the constant depends x = ⟨w, Q, y⟩ Ct n + C0() C

Input tape (read-only)

x = w ⋯ w code of Q maybe y = extra @@@@@@@ padding @@@@@[1 m][][]

 code of Q []

C

Worktapes of Q (assumed already reduced to 2 worktapes)

M :t

countdown from t n2()
t n2()

s n2()

only on . Since by assumption about time functions, we can add in Q t (n) ≥ n + 11

the initial steps for decoding into and get such that for all , 2n x ⟨w, Q, y⟩ n0 n ≥ n0

. Thus on the input Ct (n) + C + 2n + time to initialize t n ≤ t (n)0 [2()] 2

 defined as before, the whole run by finishes x = ⟨w, Q, @ ⟩
n - |⟨w,Q⟩|0 M (x)t

 and gives the opposite answer before the "clock" counts all the way M (⟨Q, x⟩3) t (n)2

down and "rings." So , which contradicts . L(M) ≠ L(Q)t L(Q) = Dt ☒

A key hidden detail here is that the process of initializing the countdown clock to must itself run t n2()

within time (on any input of length). This is the definition of being fully time t n2() x n t n2()

constructible---and finally we see why it is included under the notion of being a "reasonable" time
bound. Of course we should expect this property for "natural" time-bounding functions: polynomials,
exponentials...but the notion is needed to "protect" the theory from paradoxes that could arise from
weird functions being used as time bounds [such as for an uncomputable number as the power, nc c
but actually much weirder ones are the issue].

A word-to-the-wise about : If is a rational number (, then the time function DTIME nc c c ≥ 1)

 is "reasonable." If is an uncomputable irrational number, however, then not. If is a t n = n() c c c
computable irrational number, hmmmmm... it depends... But it is worth pointing out that for any real
numbers , there are rational numbers such that .c < d q, r c < q < r < d

