
CSE491/596 Lecture Mon. 11/2/20: Reductions From 3SAT By Component Design IICSE491/596 Lecture Mon. 11/2/20: Reductions From 3SAT By Component Design II
  
[Repeating the beginning from Friday 10/30, but restoring the first diagram the way it was before lecture[Repeating the beginning from Friday 10/30, but restoring the first diagram the way it was before lecture  
so that it shows the common beginning point.]so that it shows the common beginning point.]
  
The "Ladder and Gadgets" framework for reductionf from 3SAT: Given a 3CNF formulaThe "Ladder and Gadgets" framework for reductionf from 3SAT: Given a 3CNF formula  

, lay out , lay out  "rungs" of 2 nodes each and  "rungs" of 2 nodes each and  "clause gadgets", plus "clause gadgets", plus  𝜙𝜙 xx ,, …… ,, xx   ==  C C   ∧∧   ⋯⋯   ∧∧  C C(( 11 nn)) 11 mm nn mm
(optionally) space for one or more "governing nodes":(optionally) space for one or more "governing nodes":
  

  
Usually the rung nodes are connected, but not always---and sometimes an extra node or two are addedUsually the rung nodes are connected, but not always---and sometimes an extra node or two are added  

to each rung.To show 3SAT to each rung.To show 3SAT IND SET, we need to map IND SET, we need to map  such that  such that  has an has an  ≤≤   
pp
mm ff 𝜙𝜙   ==   GG,, kk(( )) (( )) GG

independent set independent set  of size (at least)  of size (at least)  if and only if  if and only if  is satisfiable. is satisfiable.    SS kk 𝜙𝜙
  
For this reduction, we make the "rungs" into actual edges between each For this reduction, we make the "rungs" into actual edges between each  and its negation  and its negation  and give and give  xxii xx⏨⏨ii

each clause three nodes to make a triangle.  Each clause node is labeled by a literal in the clause.each clause three nodes to make a triangle.  Each clause node is labeled by a literal in the clause.    
Later we will include the clause index Later we will include the clause index , not just the variable index , not just the variable index , when identifying this , when identifying this occurrenceoccurrence of of  jj ii
the literal in a clause to define the literal in a clause to define  as a set, where  as a set, where ..VV G G ==   VV,, EE(( ))
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The immediate effect, even before we consider an example of a formula, is that the maximum possibleThe immediate effect, even before we consider an example of a formula, is that the maximum possible  
 for an independent set  for an independent set  in the graph  in the graph  is is  .  The most one can do is take one vertex from each.  The most one can do is take one vertex from each  kk SS GG nn ++ mm

rung and one from each triangle to make rung and one from each triangle to make .  Note that the vertices chosen from each rung specify a.  Note that the vertices chosen from each rung specify a  SS
truth assignment to the variables.truth assignment to the variables.  
  
The final goal of the reduction is to add a third set of edges, which I call "crossing edges", to enforceThe final goal of the reduction is to add a third set of edges, which I call "crossing edges", to enforce  
that a set that a set  of size  of size  is possible if and only if its corresponding assignment satisfies the formula. is possible if and only if its corresponding assignment satisfies the formula.    SS nn ++ mm
The basic idea, even before we consider a formula, is as follows.The basic idea, even before we consider a formula, is as follows.      
  

• • Suppose clause Suppose clause  includes the positive literal  includes the positive literal .  Then we connect a crossing edge from .  Then we connect a crossing edge from  in in  CC11 xx11 xx11

 to the  to the oppositeopposite literal  literal  in the rung. in the rung.    CC11 xx⏨⏨11

• • Suppose clause Suppose clause  includes the negated literal  includes the negated literal .  Then we connect a crossing edge from .  Then we connect a crossing edge from   CC22 xx⏨⏨33 xx⏨⏨33

in in  to the opposite literal in the rung, which is just  to the opposite literal in the rung, which is just ..CC22 xx33
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The edges ensure that choosing a satisfied literal in each clause will not conflict with the truthThe edges ensure that choosing a satisfied literal in each clause will not conflict with the truth  
assignment.  Here is an example formula.assignment.  Here is an example formula.
  

..𝜙 𝜙 ==   xx   ∨∨     ∨∨  x x   ∧∧   xx   ∨∨  x x   ∨∨     ∧∧     ∨∨     ∨∨   (( 11 xx⏨⏨22 33)) (( 11 22 xx⏨⏨33)) ((xx⏨⏨11 xx⏨⏨33 xx⏨⏨44))

  
There are 9 crossing edges in all:There are 9 crossing edges in all:
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Note that a choice of vertices for Note that a choice of vertices for  is not part of  is not part of ---not part of the reduction function ---not part of the reduction function  itself.  It is only itself.  It is only  SS GG ff
part of the analysis of why the reduction is correct.part of the analysis of why the reduction is correct.    
  
To illustrate the analysis, note that the example formula To illustrate the analysis, note that the example formula  is satisfiable.  In fact, it has many satisfying is satisfiable.  In fact, it has many satisfying  𝜙𝜙
assignments.  (To make a strict 3CNF formula that is unsatisfiable and not use trivialities like duplicateassignments.  (To make a strict 3CNF formula that is unsatisfiable and not use trivialities like duplicate  
literals in the same clause, one needs to have at least 8 clauses.)  Forliterals in the same clause, one needs to have at least 8 clauses.)  For  

,,𝜙 𝜙 ==   xx   ∨∨     ∨∨  x x   ∧∧   xx   ∨∨  x x   ∨∨     ∧∧     ∨∨     ∨∨   (( 11 xx⏨⏨22 33)) (( 11 22 xx⏨⏨33)) ((xx⏨⏨11 xx⏨⏨33 xx⏨⏨44))

one of them is to set one of them is to set  true and  true and  false; then  false; then  and  and  become "don't-cares": become "don't-cares":xx11 xx33 xx22 xx44

  

  
Or we can try setting Or we can try setting  false and  false and  true: true:xx11 xx22

,,𝜙 𝜙 ==   xx   ∨∨     ∨∨  x x   ∧∧   xx   ∨∨  x x   ∨∨     ∧∧     ∨∨     ∨∨   (( 11 xx⏨⏨22 33)) (( 11 22 xx⏨⏨33)) ((xx⏨⏨11 xx⏨⏨33 xx⏨⏨44))
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This blocks two of the literals in This blocks two of the literals in .  We have to set .  We have to set  true.  This blocks  true.  This blocks  in  in  and  and  is already is already  CC11 xx33 xx⏨⏨33 CC22 xx11

blocked there.  Luckily we can choose blocked there.  Luckily we can choose  in  in .  Since we already have .  Since we already have  as an option in  as an option in  (but not (but not  xx22 CC22 xx⏨⏨11 CC33

), and variable ), and variable  is not connected elsewhere, it is again a don't care. is not connected elsewhere, it is again a don't care.xx⏨⏨33 xx44

  
One other thing happened in the diagram: each clause node added a subscript for the clause.  ThisOne other thing happened in the diagram: each clause node added a subscript for the clause.  This  
enables us to define the reduction formally by specifying the graph in set notation:enables us to define the reduction formally by specifying the graph in set notation:
  
V V ==   xx ,,   ::  1  1 ≤≤  i  i ≤≤  n n   ∪∪   xx ::  C C  has x has x   ∪∪   ::  C C  has  has {{ ii xx⏨⏨ii }} {{ ijij jj ii }} {{xx⏨⏨i,ji,j jj xx⏨⏨ii }}

E E ==  E E   ∪∪  E E   ∪∪  E Erungsrungs clausesclauses crossingcrossing

EE   ==   xx ,, ::  1  1 ≤≤  i  i ≤≤  n nrungsrungs {{(( ii xx⏨⏨ii)) }}

EE   ==   xx ,, xx ::  C C  has x has x  and x and x   ∪∪   ,, ::  C C  has  has  and  and   clausesclauses {{(( i,ji,j k,jk,j)) jj ii kk }} {{((xx⏨⏨i,ji,j xx⏨⏨k,jk,j)) jj xx⏨⏨ii xx⏨⏨kk }}

                            ∪∪   xx ,, ::  C C  has x has x  and  and ..{{(( i,ji,j xx⏨⏨k,jk,j)) jj ii xx⏨⏨kk }}

  
[Side Q: Do we need to add "[Side Q: Do we need to add " ?]?]∪∪   ,, xx ::  C C  has  has  and x and x{{((xx⏨⏨i,ji,j k,jk,j)) jj xx⏨⏨ii kk }}

  
..EE   ==   xx ,, ::     ∈∈ CC   ∪∪   ,, xx ::  x x   ∈∈ CCcrossingcrossing {{(( ii xx⏨⏨i,ji,j)) xx⏨⏨ii jj }} {{((xx⏨⏨ii i,ji,j)) ii jj }}

  
[Side Q: Do we need the second set here?  Could we "nicely" condense it using notation [Side Q: Do we need the second set here?  Could we "nicely" condense it using notation ?]?]ℓℓi,ji,j

  
And, of course, And, of course,  completes the definition of the reduction function  completes the definition of the reduction function .  The one.  The one  k k ==  n n ++ mm ff 𝜙𝜙   ==   GG,, kk(( )) (( ))

benefit of laying out these sets is that they show exactly how to benefit of laying out these sets is that they show exactly how to computecompute the graph, and how big it gets. the graph, and how big it gets.  
 We have  We have  and  and .  Both are in fact .  Both are in fact linearlinear in the size in the size  ||VV||  ==  2n 2n ++ 3m3m ||EE||  ==  n  n ++  3m  3m ++  3m  3m ==  n  n ++  6m 6m
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order-order-  of  of .  The edge lists can be streamed in one pass through the variables and clauses..  The edge lists can be streamed in one pass through the variables and clauses.    nn ++ mm(( )) 𝜙𝜙
[Note that although I have not settled on any one formal definition of "streaming algorithm", the idea of[Note that although I have not settled on any one formal definition of "streaming algorithm", the idea of  
them is useful to sharpen the understanding of how the reductions are efficiently computable.]  This isthem is useful to sharpen the understanding of how the reductions are efficiently computable.]  This is  
indeed a quasilinear-time (indeed a quasilinear-time (DQLDQL) reduction.) reduction.
  
So we have given the So we have given the CConstruction, shown that its onstruction, shown that its CComplexity is well within polynomial time, so itomplexity is well within polynomial time, so it  
remains to show remains to show CCorrectness: orrectness: .  That is, we need to show .  That is, we need to show  has has  𝜙 𝜙 ∈∈  3SAT  3SAT ⟺⟺  f f 𝜙𝜙   ∈∈  INDSET INDSET(( )) GG
an independent set an independent set of size of size  (the max possible size)  (the max possible size)  the 3CNF formula  the 3CNF formula  is is  S S k k ==  m m ++ nn ⟺⟺ 𝜙𝜙
satisfiable.satisfiable.
  

: Given : Given , it has exactly , it has exactly  nodes from rungs and one node from each clause.  For each  nodes from rungs and one node from each clause.  For each , ,  has has  ⟹⟹(( )) SS nn ii SS
either either  or  or .  The choices determine a unique truth assignment .  The choices determine a unique truth assignment .  Now consider any clause .  Now consider any clause  and and  xxii xx⏨⏨ii aa CCjj

let let  or  or  be the label of the node chosen.  In the former case, there is a crossing edge from  be the label of the node chosen.  In the former case, there is a crossing edge from  to to  xxi,ji,j xx⏨⏨i,ji,j xxi,ji,j

.  Now .  Now  cannot be the node in  cannot be the node in  from the  from the -th rung because that would give -th rung because that would give  a clash.  So the rung a clash.  So the rung  xx⏨⏨ii xx⏨⏨ii SS ii SS

node in node in  must be  must be , so the corresponding assignment makes , so the corresponding assignment makes  true, and that satisfies the clause  true, and that satisfies the clause ..  SS xxii xxii CCjj

In the latter case, there is a crossing edge from In the latter case, there is a crossing edge from  to  to .  Now .  Now  cannot be the node in  cannot be the node in  from the  from the -th-th  xx⏨⏨i,ji,j xxii xxii SS ii

rung because that would give rung because that would give  a clash.  So the rung node in  a clash.  So the rung node in  must be  must be , so the corresponding, so the corresponding  SS SS xx⏨⏨ii

assignment makes assignment makes  false.  Since  false.  Since  has  has  in this case, that likewise satisfies the clause  in this case, that likewise satisfies the clause .    Since.    Since  xxii CCjj xx⏨⏨i,ji,j CCjj

 is arbitrary, this means  is arbitrary, this means  satisfies  satisfies ..CCjj aa 𝜙𝜙
  

: Suppose : Suppose  satisfies  satisfies .  Form .  Form  by taking the  by taking the  rung nodes set true by  rung nodes set true by  and choosing one and choosing one  ⟸⟸(( )) aa 𝜙𝜙 SS nn aa
node from each clause that is satisfied.  Then by similar reasoning about the crossing edges, node from each clause that is satisfied.  Then by similar reasoning about the crossing edges,  is an is an  SS
independent set of size independent set of size  in  in .  [Note that even after fixing .  [Note that even after fixing , where you've made choices also for, where you've made choices also for  nn ++ mm GG aa
"don't-care" variables, there may be multiple "don't-care" variables, there may be multiple  sets because two or three nodes might be satisfied in sets because two or three nodes might be satisfied in  SS
any given clause.  So it is not a 1-to-1 correspondence.  But it does have the property Levin caredany given clause.  So it is not a 1-to-1 correspondence.  But it does have the property Levin cared  
about, which is that a choice of about, which is that a choice of  uniquely identifies a satisfying assignment.]  uniquely identifies a satisfying assignment.] SS ☒☒
  
  

Since Since  and  and  these problems (which we these problems (which we  IND SET IND SET ≤≤  CLIQUE CLIQUEpp
mm IND SET IND SET ≤≤  VERTEX COVER VERTEX COVERpp

mm

showed to be in showed to be in ) are also NP-complete.  Now we consider the Graph 3-Coloring Problem.) are also NP-complete.  Now we consider the Graph 3-Coloring Problem.NPNP

  
G3CG3C
InstanceInstance: Just an undirected graph : Just an undirected graph  (no  (no ).).G G ==   VV,, EE(( )) kk
QuestionQuestion: Is there a map : Is there a map  such that for all  such that for all , , ??𝜒𝜒 ::  V  V   RR,, GG,, BB→→ {{ }} uu,, vv   ∈∈  E E(( )) 𝜒𝜒 uu   ≠≠  𝜒 𝜒 vv(( )) (( ))

  
The Greek chi for "chromo-" meaning "color".  The language of 3-colorable graphs is clearly in The Greek chi for "chromo-" meaning "color".  The language of 3-colorable graphs is clearly in : we: we  NPNP

just guess the coloring, which is a string in just guess the coloring, which is a string in , and verify the coloring on each of, and verify the coloring on each of  RR,, GG,, BB{{ }}nn

 edges.  To show it is NP-complete, we use the same basic rungs-and-gadgets edges.  To show it is NP-complete, we use the same basic rungs-and-gadgets  m m ≤≤   ==  O O nnnn
22

22

layout, but with one or two twists.layout, but with one or two twists.  
  
The first thing to think about is how to establish a correspondence between colorings and truthThe first thing to think about is how to establish a correspondence between colorings and truth  

  

  



assignments to begin with, before thinking about "good" colorings (i.e., those that meet the "such that"assignments to begin with, before thinking about "good" colorings (i.e., those that meet the "such that"  
property of having no monochrome edges) property of having no monochrome edges) vis-à-visvis-à-vis satisfying assignments.  The natural idea is to give satisfying assignments.  The natural idea is to give  
each rung an edge so that each each rung an edge so that each  and  and  pair must be given different colors so that one color stands pair must be given different colors so that one color stands  xxii xx⏨⏨ii

for true and the other for false.  Well, we have to limit that to two colors for each rung, so we do so byfor true and the other for false.  Well, we have to limit that to two colors for each rung, so we do so by  
connecting connecting allall   rung nodes to a special node called  rung nodes to a special node called  for the intent to color it blue.  So on the ladder for the intent to color it blue.  So on the ladder  2n2n BB
side, we have:side, we have:
  

  
This forces each rung to use one This forces each rung to use one  and one  and one .  Now incidentally, .  Now incidentally,  is not something the is not something the  RR GG 𝜙𝜙 BB   ==   BB(( ))

reduction is able to define---it is not part of reduction is able to define---it is not part of .  But any good coloring remains good under any of the 6.  But any good coloring remains good under any of the 6  GG
permutations of the colors, so it is "wlog." that we presume permutations of the colors, so it is "wlog." that we presume .  This leaves .  This leaves  and  and  for the for the  𝜙𝜙 BB   ==   BB(( )) RR GG
rung nodes.  It is natural to have rung nodes.  It is natural to have  stand for the literals that are made true,  stand for the literals that are made true,  for false, but this is where for false, but this is where  GG RR
we have to be careful.  The permutation that swaps we have to be careful.  The permutation that swaps  and  and  while keeping  while keeping  fixed stays good, but if fixed stays good, but if  RR GG BB
flipping an assignment flipping an assignment  like  like  to  to  satisfies  satisfies  one way but not the other, there could be a one way but not the other, there could be a  aa 10101010 01010101 𝜙𝜙
mismatch on correctness requirements.mismatch on correctness requirements.
  
Let us go ahead.  The next question is, can we re-use the clauses-as-triangles idea?  With the sameLet us go ahead.  The next question is, can we re-use the clauses-as-triangles idea?  With the same  
crossing edges?  Let's try it for the same example formula:crossing edges?  Let's try it for the same example formula:
  

𝜙 𝜙 ==   xx   ∨∨     ∨∨  x x   ∧∧   xx   ∨∨  x x   ∨∨     ∧∧     ∨∨     ∨∨   (( 11 xx⏨⏨22 33)) (( 11 22 xx⏨⏨33)) ((xx⏨⏨11 xx⏨⏨33 xx⏨⏨44))
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Here's the deal: If we have a 3-coloring Here's the deal: If we have a 3-coloring , it has to use , it has to use  once in each clause triangle and once in once in each clause triangle and once in  𝜒𝜒 GG
each rung.  If each rung.  If  is green in clause  is green in clause  then its crossing edge goes to  then its crossing edge goes to  in rung  in rung .  This had to be red,.  This had to be red,  xxijij CCjj xx⏨⏨ii ii

so so  in the rung is green.  This means  in the rung is green.  This means  was set true, so  was set true, so  is satisfied.  The reasoning for a negative is satisfied.  The reasoning for a negative  xxii xxii CCjj

literal literal  being green in  being green in  is symmetrical: the crossing edge goes to  is symmetrical: the crossing edge goes to  in the rung, which must be red, in the rung, which must be red,  xx⏨⏨ijij CCjj xxii

so so  is set false, so  is set false, so  satisfies  satisfies .  Therefore we get the (.  Therefore we get the (  direction that  direction that  being 3-colorable being 3-colorable  xxii xx⏨⏨ii CCjj ⟸⟸ )) GG

implies implies  is satisfiable. is satisfiable.𝜙𝜙
  
The The direction hits a possible snag, however: Suppose direction hits a possible snag, however: Suppose  is satisfiable, but only by assignments is satisfiable, but only by assignments  ⟹⟹ 𝜙𝜙
that make all three literals in some clause true.  It's not just that we can't color all three nodes in thethat make all three literals in some clause true.  It's not just that we can't color all three nodes in the  
clause green, it's that their crossing edges go to red nodes in the rungs.  Suppose this happens forclause green, it's that their crossing edges go to red nodes in the rungs.  Suppose this happens for  
clause clause  in our example: in our example:CC11

  
𝜙 𝜙 ==   xx   ∨∨     ∨∨  x x   ∧∧   xx   ∨∨  x x   ∨∨     ∧∧     ∨∨     ∨∨   (( 11 xx⏨⏨22 33)) (( 11 22 xx⏨⏨33)) ((xx⏨⏨11 xx⏨⏨33 xx⏨⏨44))
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Does the sameDoes the same
constructionconstruction
work for G3C?work for G3C?



  
Now the clause Now the clause  is "redlocked": we can't color any of its nodes red, so we cannot color it.  Note, is "redlocked": we can't color any of its nodes red, so we cannot color it.  Note,  CC11

however, that when an assignment fails to satisfy a clause, the resulting "greenlock" is exactly what wehowever, that when an assignment fails to satisfy a clause, the resulting "greenlock" is exactly what we  
want for correctness in the want for correctness in the direction.  This is what happens to direction.  This is what happens to  if we set  if we set , , , and , and  all true. all true.    ⟹⟹ CC33 xx11 xx33 xx44

So we cannot fix the "redlock" issue without damaging the "greenlock" feature.So we cannot fix the "redlock" issue without damaging the "greenlock" feature.
  
Unless, that is, we can invoke an extra condition that "redlock" never happens: that no assignment canUnless, that is, we can invoke an extra condition that "redlock" never happens: that no assignment can  
satisfy all three literals in a clause.  This is a condition that the initial "scholia" on the Cook-Levinsatisfy all three literals in a clause.  This is a condition that the initial "scholia" on the Cook-Levin  
reduction allow us to invoke.  Then the reduction allow us to invoke.  Then the direction goes through: In every direction goes through: In every , take one node that is, take one node that is  ⟹⟹ CCjj

satisfied and the other not satisfied.  The crossing edges make it good to color the former green andsatisfied and the other not satisfied.  The crossing edges make it good to color the former green and  
the latter red.  The blue color the latter red.  The blue color  can then be used for the third node in the clause. can then be used for the third node in the clause.BB
  
Thus if Thus if  is "Not All Equal"-satisfiable then  is "Not All Equal"-satisfiable then  is 3-colorable.  And the original ( is 3-colorable.  And the original (  direction also direction also  𝜙𝜙 GG ⟸⟸ ))

works this way: the red node in the clause cannot be satisfied.  Thus we actually get works this way: the red node in the clause cannot be satisfied.  Thus we actually get NAE-3SATNAE-3SAT    ≤≤
pp
mm

G3CG3C.  This is good enough to show that .  This is good enough to show that G3CG3C is NP-complete.  And to top it off, if  is NP-complete.  And to top it off, if  is an "NAE" is an "NAE"  aa
satisfying assignment, then so it its flip satisfying assignment, then so it its flip .  So the symmetry in the coloring is a feature, not a bug..  So the symmetry in the coloring is a feature, not a bug.a'a'

  
If, on the other hand, we want to do the reduction strictly from 3SAT without special Cook-Levin appeal,If, on the other hand, we want to do the reduction strictly from 3SAT without special Cook-Levin appeal,  
then we need to modify then we need to modify ---as the ALR chapter does.  This builds on the "governing blue node" idea to---as the ALR chapter does.  This builds on the "governing blue node" idea to  GG
enforce an asymmetry between red and green as well.enforce an asymmetry between red and green as well.

  

  

CC11

CC22

CC33

xx⏨⏨3,23,2

xx1,11,1

xx⏨⏨2,12,1

xx3,13,1

xx1,21,2

xx2,22,2

xx⏨⏨1,31,3

xx⏨⏨3,33,3

xx⏨⏨4,34,3

xx⏨⏨11 xx11

xx⏨⏨22 xx22

xx⏨⏨33 xx33

xx⏨⏨44 xx44

BB

G G ==   
Does the sameDoes the same
constructionconstruction
work for G3C?work for G3C?


