• If the input tapes of both machine are right-only as well as read-only, then there is no problem: the output \(y = f(x) \) of \(M \) is streamed to \(M' \) computing \(g(y) = z \) and never has to be written down.

• If each machine is allowed \(r(n) \) left-to-right streaming passes over its input and \(y \) is a stream, then the tandem can operate with \(r(n)^2 \) passes on \(x \).

• But if \(M' \) can demand to back up to a previous input bit \(y_{i-1} \) at any time, then we need to allow \(M \) to be restarted arbitrarily many times. This can be implemented by storing the current demand-bit \(i \) on another log-sized tape.
• All the NP-completeness results we've shown have been valid under \leq_m^{\log}.
• **GAP** is complete for NL under \leq_m^{\log}.
• The language **CVP** of the **Circuit Value Problem**: given a Boolean circuit C_n and an input $x \in \{0, 1\}^n$, is $C_n(x) = 1$? is complete for P under \leq_m^{\log}.
• The language **TQBF** of true **quantified Boolean formulas** is complete for **PSPACE** under \leq_m^{\log}.