
CSE491/596 Fri. 11/6: NP-Completeness By Component Design IV: Path ProblemsCSE491/596 Fri. 11/6: NP-Completeness By Component Design IV: Path Problems
  
The basic path problem is, gives a graph The basic path problem is, gives a graph  and nodes  and nodes , is there a path from , is there a path from  to  to  in  in ??    GG ss,, t t ∈∈  V V ss tt GG
Whether Whether  is a directed or undirected graph, this is in  is a directed or undirected graph, this is in  by breadth-first search.  But when we talk by breadth-first search.  But when we talk  GG PP

about more than one path and put constraints on the paths, problems become NP-hard and complete.about more than one path and put constraints on the paths, problems become NP-hard and complete.    
One natural constraint is that multiple paths avoid each other---meaning they use different vertices.One natural constraint is that multiple paths avoid each other---meaning they use different vertices.
  
Disjoint Connecting PathsDisjoint Connecting Paths
InstanceInstance: An undirected graph : An undirected graph , start nodes , start nodes , and target nodes , and target nodes ..G G ==   VV,, EE(( )) ss ,, …… ,, ss11 kk tt ,, …… ,, tt11 kk

QuestionQuestion: : Are thereAre there disjoint paths  disjoint paths  with each  with each  going from  going from  to  to ??PP ,, …… ,, PP11 kk PPii ssii ttii
  
For path problems we use other ideas besides "rungs" and "ladders."  We need to set up zones ofFor path problems we use other ideas besides "rungs" and "ladders."  We need to set up zones of  
possible conflict between paths, or where paths must contend with their constraints.  In this case, thepossible conflict between paths, or where paths must contend with their constraints.  In this case, the  
idea is to have two sets of start and target nodes.  One set stands for the variables, the other for theidea is to have two sets of start and target nodes.  One set stands for the variables, the other for the  
clauses.  Thus given clauses.  Thus given , we allocate start nodes, we allocate start nodes  𝜙𝜙 xx ,, …… ,, xx   ==  C C   ∧∧   ⋯⋯   ∧∧  C C(( 11 nn)) 11 mm

  
S S ==   ss ,, ss ,, …… ,, ss   ∪∪   SS ,, SS ,, …… ,,  S S{{ 11 22 nn }} {{ 11 22 mm }}
  
and target nodes---note that and target nodes---note that ::k k ==  n n ++ mm
  
T T ==   tt ,, tt ,, …… ,, tt   ∪∪   TT ,, TT ,, …… ,,  T T{{ 11 22 nn }} {{ 11 22 mm }}

  
We also need a mechanism to say a variable is true or false.  This is done by giving each variable pathWe also need a mechanism to say a variable is true or false.  This is done by giving each variable path  
two possible "tracks"---say upper for true, lower for false---where the paths connecting the start two possible "tracks"---say upper for true, lower for false---where the paths connecting the start  and and  ssii
terminal terminal  for each variable  for each variable  will run horizontally. will run horizontally.    ttii xxii

  
Next, we need a mechanism to say a clause is satisfied.  Naturally, we make Next, we need a mechanism to say a clause is satisfied.  Naturally, we make  be satisfied if and only be satisfied if and only  CCjj

if we can get a path from if we can get a path from  to  to , and it helps to imagine these paths running vertically.  As for which, and it helps to imagine these paths running vertically.  As for which  SSjj TTjj

literal satisfies it, we create three vertical "tracks," one for each literal in the clause.literal satisfies it, we create three vertical "tracks," one for each literal in the clause.    
  
Last, we need to say how Last, we need to say how  is satisfied when a literal  is satisfied when a literal  in it is or is not made true.  The idea is: in it is or is not made true.  The idea is:CCjj ℓℓii

  
Make the horizontal track in which Make the horizontal track in which  is false block the vertical track for  is false block the vertical track for  in  in ..ℓℓii ℓℓii CCjj

  
Whereas, the horizontal track in which Whereas, the horizontal track in which  is true allows the vertical track to pass through---they might is true allows the vertical track to pass through---they might  ℓℓii

look like they cross when drawn in the plane, but really one goes over the other---without an "at-gradelook like they cross when drawn in the plane, but really one goes over the other---without an "at-grade  
intersection" represented by a node. Here is the field of play for intersection" represented by a node. Here is the field of play for ::n n ==  4 4,,  m  m ==  3 3

  

  

  



  
 Here is the whole thing for the formula used before: Here is the whole thing for the formula used before:
  

𝜙 𝜙 ==   xx   ∨∨     ∨∨  x x   ∧∧   xx   ∨∨  x x   ∨∨     ∧∧     ∨∨     ∨∨   (( 11 xx⏨⏨22 33)) (( 11 22 xx⏨⏨33)) ((xx⏨⏨11 xx⏨⏨33 xx⏨⏨44))

  

  

  

ss11

ss22

ss33

ss44

tt11

tt22

tt33

tt44

SS11 SS22 SS33

TT11 TT22 TT33

xx == 1111

xx == 0011

xx == 1122

xx == 0022

xx == 1133

xx == 0033

xx == 1144

xx == 0044



𝜙 𝜙 ==   xx   ∨∨     ∨∨  x x   ∧∧   xx   ∨∨  x x   ∨∨     ∧∧     ∨∨     ∨∨   (( 11 xx⏨⏨22 33)) (( 11 22 xx⏨⏨33)) ((xx⏨⏨11 xx⏨⏨33 xx⏨⏨44))

  
Once again, the size of the graph is Once again, the size of the graph is  nodes and the complexity of the reduction function is nodes and the complexity of the reduction function is  OO mm ++ nn(( ))

similar.  The one detail that is slightly trickier than before is that the edges out of the node for the similar.  The one detail that is slightly trickier than before is that the edges out of the node for the  in in  xx11

clause clause  have to "know" that there was an  have to "know" that there was an  in clause  in clause , so the horizontal edge goes left to there, so the horizontal edge goes left to there  CC22 xx11 CC11

rather than all the way back to the start node rather than all the way back to the start node .  But by labeling nodes .  But by labeling nodes  for  for  or  or  in clause  in clause   ss11 ±±xxijij xxii xx⏨⏨ii CCjj

and sorting on one index or the other, one can determine all the edges needed.  Such use of sorting isand sorting on one index or the other, one can determine all the edges needed.  Such use of sorting is  
typical of typical of quasilinearquasilinear time.  (Note that each vertical track has exactly one node, so this issue does not time.  (Note that each vertical track has exactly one node, so this issue does not  
arise for the vertical edges.)  The correctness of this reduction is a self-study exercise.arise for the vertical edges.)  The correctness of this reduction is a self-study exercise.
  
Moving on from here, what we note is that generating the graph edge-by-edge only requires space toMoving on from here, what we note is that generating the graph edge-by-edge only requires space to  
manipulate indices of size manipulate indices of size .  If we back off the use of sorting, we can generate .  If we back off the use of sorting, we can generate  node-by- node-by-OO nn((loglog )) GG𝜙𝜙

node, needing only to store the current indices node, needing only to store the current indices  and  and , on pain of hunting through , on pain of hunting through  multiple times---for multiple times---for  ii jj 𝜙𝜙

running time order running time order .  The reduction function then runs in logarighmic space.  The notation is:.  The reduction function then runs in logarighmic space.  The notation is:mm ++ nn(( ))22

  
• • The class of languages decidable in The class of languages decidable in  space is denoted by either  space is denoted by either  or  or OO nn((loglog )) LL DLOGDLOG..

• • The class of functions computable in The class of functions computable in  space is denoted by  space is denoted by ..OO nn((loglog )) FLFL

  

  

ss11

ss22

ss33

ss44

tt11

tt22

tt33

tt44

SS11 SS22 SS33

TT11 TT22 TT33

xx == 1111

xx == 0011

xx == 1122

xx == 0022

xx == 1133

xx == 0033

xx == 1144

xx == 0044

xx22

xx11

xx⏨⏨22

xx33 xx11 xx⏨⏨33

xx⏨⏨33

xx⏨⏨11 xx⏨⏨44



  
DefinitionDefinition: A language : A language  mapping-reduces to a language  mapping-reduces to a language  in logarithmic space (logspace), written in logarithmic space (logspace), written  AA BB

, if , if  mapping-reduces to  mapping-reduces to  via a function  via a function ..    A A ≤≤  B Bmm
loglog AA BB f f ∈∈   FLFL

  
• • Every regular reduction is a logspace reduction, in fact, computable in zero space.Every regular reduction is a logspace reduction, in fact, computable in zero space.
• • The non-regular reduction The non-regular reduction  from an arbitrary language  from an arbitrary language  in NP to  in NP to  is is  ff xx   ==   ⟨⟨NN ,, xx,, @@ ⟩⟩(( )) AA

pp |x||x|(( )) AA KKNPNP

computable in logspace because the arithmetic needed to compute a polynomial function computable in logspace because the arithmetic needed to compute a polynomial function  is is  pp nn(( ))

computable in computable in  space. space.OO nn((loglog ))

• • The Cook-Levin reduction can be computed in The Cook-Levin reduction can be computed in  space because it only needs to keep space because it only needs to keep  OO nn((loglog ))

track of one wire label track of one wire label  at a time and determine which gates it comes from and goes to.  Thus at a time and determine which gates it comes from and goes to.  Thus  wwkk

3SAT is complete for 3SAT is complete for  under the under the relation too.relation too.NPNP ≤≤ mm
loglog

• • The reduction functions by component design are likewise in The reduction functions by component design are likewise in ..    FLFL

  
One advantage of One advantage of is that it enables finer distinctions in complexity.is that it enables finer distinctions in complexity.≤≤ mm

loglog

  
• • The class of languages decidable by NTMs running in The class of languages decidable by NTMs running in  space is denoted by  space is denoted by ..OO nn((loglog )) NLNL

  
Graph Accessibility ProblemGraph Accessibility Problem ( (GAPGAP))
InstanceInstance: A directed graph : A directed graph  and nodes  and nodes ..G G ==   VV,, EE(( )) ss,, t t ∈∈  V V
QuestionQuestion: Is there a path from : Is there a path from  to  to  in  in ??ss tt GG
  
TheoremTheorem: : GAP GAP is in is in ..NLNL

  
ProofProof.  (by picture)  A nondeterministic Turing machine .  (by picture)  A nondeterministic Turing machine can guess a path from can guess a path from  to  to  (when one (when one  N N ss tt
exists) by keeping exists) by keeping  on one tape and maintaining its current node (initially  on one tape and maintaining its current node (initially ) on another.) on another.    tt ss
  

  
 first copies  first copies , , , and , and  onto worktapes as shown.  A nondeterministic computation path by  onto worktapes as shown.  A nondeterministic computation path by   NN ss tt n n ==   ||VV|| NN

  

  

tt

⟨⟨ ss,, pp ,, ss,, qq ,, pp,, rr ,, pp,, uu ,, qq,, vv ,, …… ,, Graph G Graph G ==   VV,, EE  given as edge list given as edge list⟩⟩,,  plus  s plus  s;;  t t(( )) (( )) (( )) (( )) (( )) (( ))

ss

nn

-size -size OO nn((loglog ))
bounded tapesbounded tapes

Always has current node, initially Always has current node, initially ..ss

Read-only input tape, not counted against space usageRead-only input tape, not counted against space usage

Fixed copy of Fixed copy of  for easy comparison for easy comparisontt

Since there is a path of length Since there is a path of length  if there is one at all,  if there is one at all, <<  n n NN
can decrement from can decrement from  at each step and halt and reject on  at each step and halt and reject on nn 0.0.



begins with a "guess" of an out-neighbor of begins with a "guess" of an out-neighbor of , such as , such as  or  or  above.  This overwrites  above.  This overwrites , and then , and then   ss pp qq ss NN
compares it against compares it against  to see if the goal has been reached.  If so, this computation path by   to see if the goal has been reached.  If so, this computation path by   accepts, accepts,  tt NN
and this makes the whole machine accept.  If not, and this makes the whole machine accept.  If not,  decrements its third tape, which acts as a decrements its third tape, which acts as a  NN
"countdown clock."  If the clock hits "countdown clock."  If the clock hits , this particular path by , this particular path by  halts and does not accept (other paths halts and does not accept (other paths  00 NN
might accept); thus we enforce the condition that might accept); thus we enforce the condition that  cannot have computations that loop forever.  Else, cannot have computations that loop forever.  Else,  NN

 reiterates the "guess" step to move to another node. reiterates the "guess" step to move to another node.NN
  
The point is that The point is that  need only maintain one current node along a path.  On a lucky guess of those need only maintain one current node along a path.  On a lucky guess of those  NN
neighbors that make progress toward neighbors that make progress toward , eventually reaching , eventually reaching  itself, the path will accept.  Thus  itself, the path will accept.  Thus   tt tt NN
accepts accepts  if and only if there is a path from  if and only if there is a path from  to  to , and using only the work space shown---which, and using only the work space shown---which  ⟨⟨GG,, ss,, tt⟩⟩ ss tt
is logarithmic. (Whereas, a deterministic TM using breadth-first search would need linear space to storeis logarithmic. (Whereas, a deterministic TM using breadth-first search would need linear space to store  
all the nodes already visited.)  all the nodes already visited.)  ☒☒
  
  

  

  


