If the input tapes of both machines are **right-only** as well as read-only, then there is no problem: the output \(y = f(x) \) of \(M \) is streamed to \(M' \) computing \(g(y) = z \) and never has to be written down.

If each machine is allowed \(r(n) \) left-to-right streaming passes over its input and \(y \) is a stream, then the tandem can operate with \(r(n)^2 \) passes on \(x \).

But if \(M' \) can demand to back up to a previous input bit \(y_{i-1} \) at any time, then we need to allow \(M \) to be restarted arbitrarily many times. This can be implemented by storing the current demand-bit \(i \) on another log-sized tape.
All the NP-completeness results we've shown have been valid under $\leq \log m$.

GAP is complete for **NL** under $\leq \log m$.

The language **CVP** of the **Circuit Value Problem**: given a Boolean circuit C_n and an input $x \in \{0,1\}^n$, is $C_n(x) = 1$? is complete for **P** under $\leq \log m$.

The language **TQBF** of true **quantified Boolean formulas** is complete for **PSPACE** under $\leq \log m$. We will show this next.

Quantified Boolean Formulas (which are really logical **sentences**)

A **quantified Boolean formula** (QBF) may have quantifiers \exists and \forall on single Boolean variables as well as the Boolean connectives \land, \lor, \neg. A QBF ψ is in **prenex form** if it has the form

$$\psi = (Q_1x_1)(Q_2x_2) \cdots (Q_nx_n)\phi(x_1, x_2, \ldots, x_n),$$

where each Q_i is \exists or \forall and ϕ is an ordinary Boolean formula. The simplest example of a QBF in prenex form is

$$\psi = (\exists x_1)(\exists x_2) \cdots (\exists x_n)\phi(x_1, x_2, \ldots, x_n).$$

Then ψ is true if and only if ϕ is satisfiable. In musical counterpoint, the QBF
$$\psi = (\forall x_1)(\forall x_2) \cdots (\forall x_n)\phi'(x_1, x_2, \ldots, x_n)$$

is true if and only if ϕ' is a tautology. Where it gets trickier---for our brains as well---is when the quantifiers alternate \exists and \forall. Then the problem of whether a QBF is true evidently rises above the level of NP and co-NP. For a higher example from a game like chess, Black has a checkmate in three if

$$(\exists bm_1)(\forall wm_1)(\exists bm_2)(\forall wm_2)(\exists bm_3)\text{WhiteIsMated}(\vec{n}').$$

Here the quantifiers read as being applied to possible moves in a chess position, but they are really running over Boolean variables

$$b_{1,1}, b_{1,2}, \ldots, b_{1,\ell}; w_{1,1}, w_{1,2}, \ldots, w_{1,\ell}; b_{2,1}, b_{2,2}, \ldots, b_{2,\ell}; w_{2,1}, w_{2,2}, \ldots, w_{2,\ell}; b_{3,1}, b_{3,2}, \ldots, b_{3,\ell}; \ldots$$

that together code the possible moves in binary notation. In the background is another vector of variables \vec{n} representing a chess position square-by-square. Besides a Boolean-level formula for WhiteIsMated, we would also need a predicate $\text{IsLegalMove}(\vec{n}, bm_1, \vec{n}')$ where we need duplicate copy \vec{n}' of the variables in \vec{n} to represent the position after Black's first move. And so on with an invocation of $\text{IsLegalMove}(\vec{n}', wm_1, \vec{n}'')$ up until the final checkmate position. The relevant analogy from chess to Turing machines is that our main theorem will involve how IDs work like their "positions".

The mate-in-3 formula counts as having $k = 5$ alternations. A mate-in-4 would be 7 alternations, and so on. It seems like if we just wanted to define "Black can give checkmate" we would need infinitely many quantifiers and variables to handle the possibility of arbitrarily long checkmates, but here is where the "restricted space" of a concrete 8×8 chessboard comes in. Owing to various considerations including the "fifty move rule" there is an upper limit on the length of a possible checkmate and hence on the size of the formula. Controlling how the formula size grows with space and time usage is the key to the proof of our main theorem today.

Let TQBF denote the language of true QBFs (in prenex form).

Note: Misnomers and variant usages abound: When all variables in ψ are quantified---as represented above---ψ should really be called a quantified Boolean sentence. Only a sentence can be true or false; strictly speaking, the word satisfiable applies whenever there is at least one free (i.e., unquantified) variable and there is a way to make the formula true. When all assignments to the free variables \vec{x} make the formula true then ψ is often called "true" although properly it is the QBF $(\forall \vec{x})\phi$ that is true. The language of true QBFs is often (confusingly) called just QBF. The non-quantifier body ϕ of a QBF in prenex form is called its matrix.
PSPACE-completeness of TQBF

The above already shows $\text{SAT} \leq^m_{\text{m}} \text{TQBF}$ and $\text{TAUT} \leq^m_{\text{m}} \text{TQBF}$. Thus TQBF cannot be in NP or in co-NP unless NP = co-NP. We will locate it at a higher completeness level, that of polynomial space, PSPACE.

Theorem: TQBF is complete for PSPACE under \leq_m^{\log}.

Proof. First, we need to show that TQBF belongs to PSPACE. This is one place where limiting QBFs to prenex form comes in handy.

$\psi = (\exists x_1)(\forall x_2)(\exists x_3) \cdots (\forall x_{n-1})(\exists x_n)\phi(x_1, x_2, \ldots, 1, 0),$

Now let any $A \in \text{PSPACE}$ be given. Take a DTM M that accepts A using space $O(n^k)$ for some $k \geq 1$. Given any x, we need to produce a QBF ψ_x that is true $\iff x \in A$.

Actually, our proof will not care whether we take an NTM N instead, and will work for any general space bound $s(n) \geq \log n$—this is how we will deduce Savitch’s theorem from the proof.
Key idea: Think again of G_x, the 2D graph with edges (i,j) st. $i \equiv_j n \cdot j$. Then $x \in A \iff G_x$ has a path of length $2^0(\gamma(m))$ from the start ID $I_0(x)$ to {an acceptibl} ID I_f.

Put $2^r = 2^0(\gamma(m))$, so $r = r(n)$.

For $0 \leq j \leq r$, define $\Phi_j(I,K)$ to hold if $I \equiv_N K$ in at most 2^j steps.

So: $x \in A \iff \Phi_r(I_0(x), I_f)$.

\[\iff (\exists j) \Phi_{r-c}(I_0(x), j) \wedge \Phi_{r-c}(j, I_f) \]
Generally,
\[\exists_j (I, K) \Leftrightarrow (\exists j) \exists_{j-1} (I, J) \land \exists_{j-1} (J, K). \]
\[\Leftrightarrow (\exists j) (\forall I', J') : \]
\[\left[\left(I' = I \wedge J' = J \right) \lor \left(I' = J \wedge J' = K \right) \right] \Rightarrow \exists_{j-1} (I', J'). \]

This is a single branch recursion. At bottom
\[\exists_0 (I, K) = I, I = K \lor I \notin K. \]
Total size is \(r \times |\exists_0 (I, K)| = O(r^2) \).