Log Space Reducibility $\leqslant_{m}^{\text {nog }}$ Fines than \leqslant_{m}^{P} since LP Log-Spare Computable Frs

Technical Points If

Output tape dies not
count aquigyr space ban
$|y| \leq 2^{O(\operatorname{lyn} n)}=|x|^{0(1)}$.
(function lrospace) then
so does got. Issue:

bounded

If M (campus $y=f(x)$
and M^{\prime} compute $~$
$Z=g(y)$ "
we cur chain" M and M^{\prime}

toocther but we cant storey,
within the $O(\log |x|)$ spaubld.

- If the input tapes of both machine are right-only as well as read-only, then there is no problem: the output $y=f(x)$ of M is streamed to M^{\prime} computing $g(y)=z$ and never has to be written down.
- If each machine is allowed $r(n)$ left-to-right streaming passes over its input and y is a stream, then the tandem can operate with $r(n)^{2}$ passes on x.
- But if M^{\prime} can demand to back up to a previous input bit y_{i-1} at any time, then we need to allow M to be restarted arbitrarily many times. This can be implemented by storing the current demand-bit i on another log-sized tape.

> Whachnenerer "M' wank to move its input head Left, M re-stars prom /ne beginning until it outputs bit i-1 oft, white is stored $\longrightarrow \square y_{i}$

Therefore $\leqslant_{m}^{\log }$ reduction are transitive: $A \operatorname{sim}_{m}^{\log } B \wedge B \leq_{m}^{\log C a} A \leq_{m}^{\log } C^{(2)}$ In fact, every \leqslant_{m} and \leq_{m}^{p} reduction shawn in the course has ackilly, been a $S_{m}^{l u g}$ reduction or even the sharper one-pass streaming Kind.

Hallmarks of a \leq_{m} Ion Reduction:

- The objects it construes have an explicit formula. E.g.:

$$
\begin{aligned}
& G_{\phi}=\left(V_{\phi}, F_{\phi}\right), \mathbb{V}_{\phi}=\left\{x_{i}, X_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i j}, X_{i j}: \text { in clanule } X_{i}\right. \text { is } \\
& E_{\phi}=\{\cdots\} \cup\{\cdots\} \text { et. }
\end{aligned}
$$

- The individual items used in building σ_{ϕ} etc. are finite clumps of Ollogn) -sized labels such as variable numbers i, clause \#s 3 ;
- (In consequence), local features of the target object fol lover.. depend only on local features of the source object leg; C, 1-1 ha, or on simple glebeal connections-likle copying $\langle M, W\rangle$ or hooking up the Band 6 nodes in the 35AT $\log _{\mathrm{m}}$ G3 exam
- All the NP-completeness results we've shown have been valid under $\leq{ }_{m}^{\log }$.
- GAP is complete for NL under $\leq{ }_{m}^{\log }$.
- The language CVP of the Circuit Value Problem: given a Boolean circuit C_{n} and an input $x \in\{0,1\}^{n}$, is $C_{n}(x)=1$? is complete for P under $\leq{ }_{m}^{\log }$
- The language TQBF of true quantified Boolean formulas is complete for PSPACE under $\leq{ }_{m}^{\log }$. We will show this next.

Quantified Boolean Formulas (which are really logical sentences)

A quantified Boolean formula (QBF) may have quantifiers \exists and \forall on single Boolean variables as well as the Boolean connectives \wedge, \vee, \neg. A QBF ψ is in prenex form if it has the form

$$
\psi=\left(Q_{1} x_{1}\right)\left(Q_{2} x_{2}\right) \cdots\left(Q_{n} x_{n}\right) \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where each Q_{i} is \exists or \forall and ϕ is an ordinary Boolean formula. The simplest example of a QBF in prenex form is

$$
\psi=\left(\exists x_{1}\right)\left(\exists x_{2}\right) \cdots\left(\exists x_{n}\right) \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Then ψ is true if and only if ϕ is satisfiable. In musical counterpoint, the QBF

$$
\psi=\left(\forall x_{1}\right)\left(\forall x_{2}\right) \cdots\left(\forall x_{n}\right) \phi^{\prime}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

is true if and only if ϕ^{\prime} is a tautology. Where it gets trickier---for our brains as well---is when the quantifiers alternate \exists and \forall. Then the problem of whether a QBF is true evidently rises above the level of NP and co-NP. For a higher example from a game like chess, Black has a checkmate in three if

$$
\left(\exists \overrightarrow{b m}_{1}\right)\left(\forall \overrightarrow{w m}_{1}\right)\left(\exists \overrightarrow{b m}_{2}\right)\left(\forall \overrightarrow{w m}_{2}\right)\left(\exists \overrightarrow{b m}_{3}\right) \text { WhiteIsMated }\left(\vec{\pi}^{\prime \prime \prime \prime \prime}\right)
$$

Here the quantifiers read as being applied to possible moves in a chess position, but they are really running over Boolean variables

$$
b_{1,1}, b_{1,2}, \ldots b_{1, \ell} ; w_{1,1}, w_{1,2}, \ldots w_{1, \ell} ; b_{2,1}, b_{2,2}, \ldots b_{2, \ell} ; w_{2,1}, w_{2,2}, \ldots w_{2, \ell} ; b_{3,1}, b_{3,2}, \ldots b_{3, \ell} ; \ldots
$$

that together code the possible moves in binary notation. In the background is another vector of variables $\vec{\pi}$ representing a chess position square-by-square. Besides a Boolean-level formula for WhiteIsMated, we would also need a predicate $\operatorname{IsLegalMove}\left(\vec{\pi}, \overrightarrow{b m_{1}}, \vec{\pi}^{\prime}\right)$ where we need duplicate copy $\vec{\pi}^{\prime}$ of the variables in $\vec{\pi}$ to represent the position after Black's first move. And so on with an invocation of IsLegalMove $\left(\vec{\pi}^{\prime}, \overrightarrow{w m}_{1}, \vec{\pi}^{\prime \prime}\right)$ up until the final checkmate position. The relevant analogy from chess to Turing machines is that our main theorem will involve how IDs work like their "positions".

The mate-in-3 formula counts as having $k=5$ alternations. A mate-in- 4 would be 7 alternations, and so on. It seems like if we just wanted to define "Black can give checkmate" we would need infinitely many quantifiers and variables to handle the possibility of arbitrarily long checkmates, but here is where the "restricted space" of a concrete 8×8 chessboard comes in. Owing to various considerations including the "fifty move rule" there is an upper limit on the length of a possible checkmate and hence on the size of the formula. Controlling how the formula size grows with space and time usage is the key to the proof of our main theorem today.

Let TQBF denote the language of true QBFs (in prenex form).

Note: Misnomers and variant usages abound: When all variables in ψ are quantified---as represented above--- ψ should really be called a quantified Boolean sentence. Only a sentence can be true or false; strictly speaking, the word satisfiable applies whenever there is at least one free (i.e., unquantified) variable and there is a way to make the formula true. When all assignments to the free variables \vec{x} make the formula true then ψ is often called "true" although properly it is the QBF $(\forall \vec{x}) \psi$ that is true. The language of true QBFs is often (confusingly) called just QBF. The non-quantifier body ϕ of a QBF in prenex form is called its matrix.

The above already shows $S A T \leq{ }_{m}^{\log } T Q B F$ and $T A U T \leq{ }_{m}^{\log } T Q B F$. Thus TQBF cannot be in NP or in co-NP unless NP = co-NP. We will locate it at a higher completeness level, that of polynomial space, PSPACE.

Theorem: TQBF is complete for PSPACE under $\leq{ }_{m}^{\log }$.

Proof. First, we need to show that TQBF belongs to PSPACE. This is one place where limiting QBFs to prenex form comes in handy.

Now let any $A \in$ PSPACE be given. Take a DTM M that accepts A using space $O\left(n^{k}\right)$ for some $k \geq 1$. Given any x, we need to produce a QBF ψ_{x} that is true $\Longleftrightarrow x \in A$.

Actually, our proof will not care whether we take an NTM N instead, and will work for any general space bound $s(n) \geq \log n$---this is how we will deduce Savitch's theorem from the proof.

Key idea：Think again of G_{x} ，the IU groplo with edges（I，S）st．I衣J．Then $x \in A \leftrightarrow G_{x}$ has a path of length $2^{O(s(1))}$ from the start IO $I_{0}(x)$ to $\left\{\begin{array}{l}\text { an } \\ \text { the a depth }\end{array}\right.$ $n=(x) \operatorname{Put} 2^{r}=2^{O(s(n))^{2}}$ ，so $r=r(n)$ ．If． Put $2^{r}=2^{O(s(n))}$ ，so $r=r(n)$ ．

For $0 \leq j \leq r$ ，define $\Phi_{j}(I, K)$ to hall lithe $I \stackrel{*}{N} K$ in at most 2^{j} steps

$$
\begin{aligned}
S_{0}: & x_{\in} A \Leftrightarrow \Phi_{r}\left(I_{0}(x), I_{f}\right) . \\
& \Leftrightarrow(\exists J) \Phi_{r_{-1}}\left(I_{0}(x), J\right) \wedge \Phi_{r-1}\left(I_{,} I_{f}\right)
\end{aligned}
$$

Generally,

$$
\begin{aligned}
& \Phi_{j}(I, K) \Leftrightarrow(\exists J) \Phi_{j-1}(I, J) \wedge{ }_{j-1}(J, K) . \\
& \Leftrightarrow(\exists J)\left(\forall I^{\prime}, J^{\prime}\right): \\
& {\left[\begin{array}{l}
\left(I^{\prime}=I \wedge J^{\prime}=J\right) \\
V\left(I^{\prime}=J \wedge J^{\prime}=K\right)
\end{array}\right] \Rightarrow \Phi_{j-1}\left(I^{\prime}, J^{\prime}\right) .}
\end{aligned}
$$

This is a single branch recursion. At bottom

$$
\Phi_{0}(I, K)=L_{k} I=K \vee I \frac{1}{N} K .
$$

Total site is. $r x\left|\Phi_{0}(I, K)\right|=O\left(r^{2}\right)$.

